Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
536824331107364866310 ~1999
536829983107365996710 ~1999
536836271107367254310 ~1999
536859797322115878310 ~2000
536861939107372387910 ~1999
536863073322117843910 ~2000
536866439107373287910 ~1999
5368710011181116202311 ~2002
536876999107375399910 ~1999
536881561322128936710 ~2000
536912633322147579910 ~2000
536918353322151011910 ~2000
536923883107384776710 ~1999
536925887429540709710 ~2001
536930759107386151910 ~1999
536947139107389427910 ~1999
536956279536956279110 ~2001
536963099107392619910 ~1999
536976743107395348710 ~1999
536984761322190856710 ~2000
536987039107397407910 ~1999
536994863107398972710 ~1999
536997239107399447910 ~1999
537003253322201951910 ~2000
537007391107401478310 ~1999
Exponent Prime Factor Digits Year
537021061322212636710 ~2000
537021341322212804710 ~2000
537022259107404451910 ~1999
537023411107404682310 ~1999
537037271429629816910 ~2001
537043499107408699910 ~1999
537057991537057991110 ~2001
537060731107412146310 ~1999
537063053322237831910 ~2000
537088031107417606310 ~1999
537089753751925654310 ~2001
537115511107423102310 ~1999
537116231107423246310 ~1999
537164123107432824710 ~1999
537165007537165007110 ~2001
537167903107433580710 ~1999
537176351107435270310 ~1999
537177007537177007110 ~2001
537187457322312474310 ~2000
5371970995586849829711 ~2003
537209423107441884710 ~1999
5372102933008377640911 ~2003
537212891107442578310 ~1999
537241571107448314310 ~1999
537242411107448482310 ~1999
Exponent Prime Factor Digits Year
537253289752154604710 ~2001
5372622731611786819111 ~2002
537265627537265627110 ~2001
537269423107453884710 ~1999
537273323107454664710 ~1999
537275099107455019910 ~1999
537296099107459219910 ~1999
537303491107460698310 ~1999
537312791107462558310 ~1999
537314399107462879910 ~1999
537314773322388863910 ~2000
537330371967194667910 ~2002
537385847429908677710 ~2001
537470711107494142310 ~1999
537530711430024568910 ~2001
537546599107509319910 ~1999
537576491107515298310 ~1999
537580223107516044710 ~1999
537617077322570246310 ~2000
537631499107526299910 ~1999
5376708791828080988711 ~2002
537671837322603102310 ~2000
537737831107547566310 ~1999
537742763107548552710 ~1999
537753157322651894310 ~2000
Exponent Prime Factor Digits Year
537761369430209095310 ~2001
537761729430209383310 ~2001
537804539107560907910 ~1999
537805511107561102310 ~1999
537822419107564483910 ~1999
537825791107565158310 ~1999
537853139107570627910 ~1999
537866711430293368910 ~2001
537868237322720942310 ~2000
537872759107574551910 ~1999
537912839107582567910 ~1999
537913163107582632710 ~1999
537919919107583983910 ~1999
537932189430345751310 ~2001
537941219107588243910 ~1999
537954479107590895910 ~1999
537956047537956047110 ~2001
5379759233981021830311 ~2003
537983821322790292710 ~2000
537992831107598566310 ~1999
537995879107599175910 ~1999
538028657322817194310 ~2000
538030763107606152710 ~1999
538058197322834918310 ~2000
538070891107614178310 ~1999
Home
4.933.056 digits
e-mail
25-07-20