Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
698942591139788518310 ~2000
698947451139789490310 ~2000
698968499139793699910 ~2000
698978771139795754310 ~2000
698989979139797995910 ~2000
699012311139802462310 ~2000
699032699139806539910 ~2000
699039251139807850310 ~2000
699048121419428872710 ~2001
6990502271118480363311 ~2002
699061619139812323910 ~2000
699069179139813835910 ~2000
699073499139814699910 ~2000
6990883032376900230311 ~2003
699098843139819768710 ~2000
699111683139822336710 ~2000
699121499139824299910 ~2000
699139253978794954310 ~2002
699183763699183763110 ~2002
699187943139837588710 ~2000
699206363139841272710 ~2000
699208841559367072910 ~2002
699211559139842311910 ~2000
699214541419528724710 ~2001
699230711139846142310 ~2000
Exponent Prime Factor Digits Year
699238751139847750310 ~2000
699279083139855816710 ~2000
699296063139859212710 ~2000
699311111139862222310 ~2000
699328691139865738310 ~2000
699374657419624794310 ~2001
699374783139874956710 ~2000
699385397559508317710 ~2002
699394799139878959910 ~2000
699399599559519679310 ~2002
699410051139882010310 ~2000
699416831139883366310 ~2000
699466213419679727910 ~2001
699493979139898795910 ~2000
699500521419700312710 ~2001
699524459139904891910 ~2000
699555299139911059910 ~2000
699564539139912907910 ~2000
699573577419744146310 ~2001
699582599139916519910 ~2000
699610811139922162310 ~2000
699622223139924444710 ~2000
699639719139927943910 ~2000
699645613419787367910 ~2001
699662423139932484710 ~2000
Exponent Prime Factor Digits Year
699688211139937642310 ~2000
699688337559750669710 ~2002
699693779139938755910 ~2000
699694379139938875910 ~2000
699702539139940507910 ~2000
699729599139945919910 ~2000
699757763139951552710 ~2000
699760871139952174310 ~2000
699782351139956470310 ~2000
699848183139969636710 ~2000
699860347699860347110 ~2002
699862703139972540710 ~2000
699877151139975430310 ~2000
699905159559924127310 ~2002
6999206712939666818311 ~2003
699934799139986959910 ~2000
699941111139988222310 ~2000
699941279139988255910 ~2000
699948383139989676710 ~2000
699953651139990730310 ~2000
700015139140003027910 ~2000
700017557560014045710 ~2002
700022759140004551910 ~2000
700027703140005540710 ~2000
700059263140011852710 ~2000
Exponent Prime Factor Digits Year
700073123140014624710 ~2000
700077341560061872910 ~2002
700088351140017670310 ~2000
700102153420061291910 ~2001
700111679140022335910 ~2000
700226441420135864710 ~2001
700268291140053658310 ~2000
700287347560229877710 ~2002
700308457420185074310 ~2001
700353833420212299910 ~2001
7003838892101151667111 ~2003
7004428013922479685711 ~2004
700448579140089715910 ~2000
700452659560362127310 ~2002
700456511140091302310 ~2000
700476071140095214310 ~2000
7004774831681145959311 ~2003
700480661420288396710 ~2001
7004941312241581219311 ~2003
7004945411120791265711 ~2002
700500851140100170310 ~2000
700511039560408831310 ~2002
700528883140105776710 ~2000
700529051140105810310 ~2000
700530073420318043910 ~2001
Home
4.724.182 digits
e-mail
25-04-13