Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
524748131104949626310 ~1999
524768591104953718310 ~1999
524788259104957651910 ~1999
524807771104961554310 ~1999
524821139419856911310 ~2001
524863637314918182310 ~2000
524892911104978582310 ~1999
524905631104981126310 ~1999
524913971104982794310 ~1999
524919181314951508710 ~2000
524972531104994506310 ~1999
524994383104998876710 ~1999
525015983105003196710 ~1999
525017033735023846310 ~2001
525025103105005020710 ~1999
525047483105009496710 ~1999
525050699105010139910 ~1999
525054203105010840710 ~1999
525072371105014474310 ~1999
525072491105014498310 ~1999
525084173735117842310 ~2001
525091331105018266310 ~1999
525092437315055462310 ~2000
5251074133675751891111 ~2003
525113951105022790310 ~1999
Exponent Prime Factor Digits Year
525125681420100544910 ~2001
525156491105031298310 ~1999
525158657420126925710 ~2001
525159539105031907910 ~1999
525171791105034358310 ~1999
525187763105037552710 ~1999
525197171105039434310 ~1999
525199331105039866310 ~1999
525206663105041332710 ~1999
525210239105042047910 ~1999
525212651105042530310 ~1999
525216179105043235910 ~1999
525224363105044872710 ~1999
525244847420195877710 ~2001
525268283105053656710 ~1999
5253091071365803678311 ~2002
525318611105063722310 ~1999
525359591105071918310 ~1999
525360371105072074310 ~1999
525374231105074846310 ~1999
525382457420305965710 ~2001
525383543105076708710 ~1999
525386573315231943910 ~2000
525387671105077534310 ~1999
525424979105084995910 ~1999
Exponent Prime Factor Digits Year
525427453315256471910 ~2000
525431279105086255910 ~1999
525441071105088214310 ~1999
525453431105090686310 ~1999
525455351105091070310 ~1999
525468743105093748710 ~1999
525477893315286735910 ~2000
525478097315286858310 ~2000
525478931105095786310 ~1999
525493517315296110310 ~2000
525525491105105098310 ~1999
525554663105110932710 ~1999
5255678531261362847311 ~2002
525618179105123635910 ~1999
525620833315372499910 ~2000
525628991105125798310 ~1999
525632759105126551910 ~1999
525645671105129134310 ~1999
525656213735918698310 ~2001
525664081315398448710 ~2000
5256650811682128259311 ~2002
525675803105135160710 ~1999
525687419105137483910 ~1999
525713761315428256710 ~2000
525736901315442140710 ~2000
Exponent Prime Factor Digits Year
525740879105148175910 ~1999
525742163105148432710 ~1999
525743051105148610310 ~1999
525748523105149704710 ~1999
525751271420601016910 ~2001
525763163105152632710 ~1999
525765323105153064710 ~1999
525775403105155080710 ~1999
525784067420627253710 ~2001
525787799420630239310 ~2001
525792563105158512710 ~1999
525820019105164003910 ~1999
525834943525834943110 ~2001
525837161420669728910 ~2001
525856403105171280710 ~1999
525859403105171880710 ~1999
525881651105176330310 ~1999
525883079105176615910 ~1999
525901151105180230310 ~1999
525908711105181742310 ~1999
525912251105182450310 ~1999
525922619105184523910 ~1999
525970337315582202310 ~2000
525978961315587376710 ~2000
525994523105198904710 ~1999
Home
4.843.404 digits
e-mail
25-06-08