Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
718070861574456688910 ~2002
718110479143622095910 ~2000
718116611143623322310 ~2000
718123691143624738310 ~2000
718126151143625230310 ~2000
718127939143625587910 ~2000
718154543143630908710 ~2000
718160483143632096710 ~2000
718164659143632931910 ~2000
718180499143636099910 ~2000
718194479574555583310 ~2002
718211531143642306310 ~2000
718246211143649242310 ~2000
718249739143649947910 ~2000
718294019143658803910 ~2000
718331759143666351910 ~2000
718354327718354327110 ~2002
718380563143676112710 ~2000
718435583143687116710 ~2000
718438181431062908710 ~2001
718440761574752608910 ~2002
718442171143688434310 ~2000
718446611143689322310 ~2000
718451537431070922310 ~2001
718466519574773215310 ~2002
Exponent Prime Factor Digits Year
718470323143694064710 ~2000
7184925891005889624711 ~2002
718530443143706088710 ~2000
718576739143715347910 ~2000
718600331143720066310 ~2000
718607893431164735910 ~2001
718642763143728552710 ~2000
718679651143735930310 ~2000
718682291143736458310 ~2000
718757939575006351310 ~2002
718765997431259598310 ~2001
718767793431260675910 ~2001
718772063143754412710 ~2000
718804313431282587910 ~2001
718842577431305546310 ~2001
7188517371006392431911 ~2002
718852523143770504710 ~2000
718870679143774135910 ~2000
7188890114169556263911 ~2004
718894103143778820710 ~2000
718911071143782214310 ~2000
7189163331006482866311 ~2002
7189165571150266491311 ~2002
718960163143792032710 ~2000
71897674961975795763912 ~2007
Exponent Prime Factor Digits Year
719007323143801464710 ~2000
719007413431404447910 ~2001
719011031143802206310 ~2000
719024711143804942310 ~2000
719035679143807135910 ~2000
719060341431436204710 ~2001
719071343143814268710 ~2000
7190825231150532036911 ~2002
719106317431463790310 ~2001
719122511143824502310 ~2000
719130593431478355910 ~2001
719145239143829047910 ~2000
719148359143829671910 ~2000
7192020731582244560711 ~2003
719220791143844158310 ~2000
719224553431534731910 ~2001
7192350731150776116911 ~2002
719244023143848804710 ~2000
7192497471726199392911 ~2003
719312543143862508710 ~2000
7193283171007059643911 ~2002
719352143143870428710 ~2000
719375291143875058310 ~2000
719395343143879068710 ~2000
7194496911295009443911 ~2003
Exponent Prime Factor Digits Year
719452403143890480710 ~2000
719453051143890610310 ~2000
719459183143891836710 ~2000
719508851143901770310 ~2000
719513891143902778310 ~2000
719527799143905559910 ~2000
719528951143905790310 ~2000
719590643143918128710 ~2000
719629277431777566310 ~2001
719636399143927279910 ~2000
719643959143928791910 ~2000
719668583143933716710 ~2000
719680883143936176710 ~2000
719682563143936512710 ~2000
719693879143938775910 ~2000
719702099143940419910 ~2000
719706193431823715910 ~2001
7197394795182124248911 ~2004
719745899143949179910 ~2000
719766191143953238310 ~2000
719766479143953295910 ~2000
719826311143965262310 ~2000
719835923143967184710 ~2000
719853311143970662310 ~2000
7198677895614968754311 ~2004
Home
4.724.182 digits
e-mail
25-04-13