Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
625508879125101775910 ~2000
625523999125104799910 ~2000
625528511125105702310 ~2000
6255410991125973978311 ~2002
625582871125116574310 ~2000
625598219125119643910 ~2000
625614959125122991910 ~2000
625658651125131730310 ~2000
625664051125132810310 ~2000
625666511125133302310 ~2000
625670543125134108710 ~2000
625671071125134214310 ~2000
625675997875946395910 ~2002
625680941500544752910 ~2001
625686443125137288710 ~2000
625704461375422676710 ~2001
625719551125143910310 ~2000
625720811125144162310 ~2000
625720943125144188710 ~2000
625725671125145134310 ~2000
625738163125147632710 ~2000
625745903125149180710 ~2000
625771931125154386310 ~2000
625775537876085751910 ~2002
625775939125155187910 ~2000
Exponent Prime Factor Digits Year
625781993375469195910 ~2001
625797373375478423910 ~2001
625810331125162066310 ~2000
625838243125167648710 ~2000
625844423125168884710 ~2000
625857731125171546310 ~2000
625862459500689967310 ~2001
625862933375517759910 ~2001
625875671125175134310 ~2000
625883039125176607910 ~2000
625887131500709704910 ~2001
625894961375536976710 ~2001
625895189500716151310 ~2001
625906511125181302310 ~2000
625928053375556831910 ~2001
625970123125194024710 ~2000
625970963125194192710 ~2000
625988197375592918310 ~2001
626021867500817493710 ~2001
626065463125213092710 ~2000
626067073375640243910 ~2001
6260730791126931542311 ~2002
626074523125214904710 ~2000
6260798631502591671311 ~2002
626080151125216030310 ~2000
Exponent Prime Factor Digits Year
626085983125217196710 ~2000
626094851125218970310 ~2000
626113283125222656710 ~2000
626116301375669780710 ~2001
626117039125223407910 ~2000
626164139125232827910 ~2000
626182597375709558310 ~2001
626212571125242514310 ~2000
6262279571878683871111 ~2003
626235803125247160710 ~2000
626285351125257070310 ~2000
626377637501102109710 ~2001
626403611125280722310 ~2000
626462351125292470310 ~2000
626467643125293528710 ~2000
626485823125297164710 ~2000
626494031125298806310 ~2000
626497919125299583910 ~2000
626517071125303414310 ~2000
626544491125308898310 ~2000
626549783125309956710 ~2000
626566403125313280710 ~2000
626570363125314072710 ~2000
626588999125317799910 ~2000
626634971125326994310 ~2000
Exponent Prime Factor Digits Year
626636639125327327910 ~2000
626672681376003608710 ~2001
626681857376009114310 ~2001
626692691125338538310 ~2000
626698199125339639910 ~2000
626710211125342042310 ~2000
626754431125350886310 ~2000
626766779125353355910 ~2000
626768531125353706310 ~2000
626775563125355112710 ~2000
626790551125358110310 ~2000
626796503125359300710 ~2000
626807821376084692710 ~2001
626851943125370388710 ~2000
626858339125371667910 ~2000
626862503125372500710 ~2000
626878019125375603910 ~2000
626879009501503207310 ~2001
626889581376133748710 ~2001
6269175071003068011311 ~2002
626927531125385506310 ~2000
626933039125386607910 ~2000
626942339125388467910 ~2000
626946191125389238310 ~2000
626951603125390320710 ~2000
Home
4.724.182 digits
e-mail
25-04-13