Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
561318623112263724710 ~1999
561326399112265279910 ~1999
561357743112271548710 ~1999
561369701336821820710 ~2000
561402311112280462310 ~1999
561404639112280927910 ~1999
561410183112282036710 ~1999
561421381336852828710 ~2000
5614299831796575945711 ~2002
561457859112291571910 ~1999
561458827561458827110 ~2001
561462563112292512710 ~1999
561465683112293136710 ~1999
5614751391010655250311 ~2002
561488159112297631910 ~1999
561492493898387988910 ~2002
561511763112302352710 ~1999
561522743112304548710 ~1999
561533837449227069710 ~2001
561543001336925800710 ~2000
561559151112311830310 ~1999
561618923112323784710 ~1999
561625439112325087910 ~1999
561629231449303384910 ~2001
561647081336988248710 ~2000
Exponent Prime Factor Digits Year
561671003112334200710 ~1999
561674341337004604710 ~2000
561682343112336468710 ~1999
561689189449351351310 ~2001
561692783112338556710 ~1999
561698279449358623310 ~2001
561715103112343020710 ~1999
561725639112345127910 ~1999
561728963112345792710 ~1999
561754799112350959910 ~1999
56175802317077443899312 ~2005
561762479112352495910 ~1999
561768121337060872710 ~2000
561770351112354070310 ~1999
561785537449428429710 ~2001
561792839112358567910 ~1999
561802513337081507910 ~2000
561804731112360946310 ~1999
561823991112364798310 ~1999
561841391112368278310 ~1999
5618441471011319464711 ~2002
561862207561862207110 ~2001
561885911112377182310 ~1999
561895091112379018310 ~1999
561897683112379536710 ~1999
Exponent Prime Factor Digits Year
561899321337139592710 ~2001
561906791112381358310 ~1999
561917417449533933710 ~2001
561929843112385968710 ~1999
561969269786756976710 ~2001
56198572714836423192912 ~2005
561986963112397392710 ~1999
562010081449608064910 ~2001
562028111112405622310 ~1999
562046677337228006310 ~2001
562061183112412236710 ~1999
562073767562073767110 ~2001
562085291112417058310 ~1999
562105259112421051910 ~1999
562106137337263682310 ~2001
562123319112424663910 ~1999
562125143112425028710 ~1999
562125253337275151910 ~2001
562128893337277335910 ~2001
562132199112426439910 ~1999
562132583112426516710 ~1999
562143611112428722310 ~1999
562152421337291452710 ~2001
562157081337294248710 ~2001
562194881337316928710 ~2001
Exponent Prime Factor Digits Year
562205783112441156710 ~1999
562218749787106248710 ~2001
562238639112447727910 ~1999
562254911112450982310 ~1999
562258273337354963910 ~2001
562267259112453451910 ~1999
5622737572698914033711 ~2003
562279877337367926310 ~2001
562282631112456526310 ~1999
562283801449827040910 ~2001
562289159112457831910 ~1999
562309211112461842310 ~1999
562314563112462912710 ~1999
562329503112465900710 ~1999
562376011562376011110 ~2001
562381271112476254310 ~1999
562382003112476400710 ~1999
562395083112479016710 ~1999
562400939112480187910 ~1999
562409801449927840910 ~2001
562409819112481963910 ~1999
562451003112490200710 ~1999
562483511449986808910 ~2001
562498463112499692710 ~1999
562505159112501031910 ~1999
Home
4.933.056 digits
e-mail
25-07-20