Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
814805483162961096710 ~2001
814832591162966518310 ~2001
814854119162970823910 ~2001
814876091162975218310 ~2001
814907783162981556710 ~2001
814912991162982598310 ~2001
814973977488984386310 ~2002
814996631162999326310 ~2001
815014853489008911910 ~2002
815038859163007771910 ~2001
815051191815051191110 ~2002
815056523163011304710 ~2001
8150698971956167752911 ~2003
815101559163020311910 ~2001
815114893489068935910 ~2002
815127119163025423910 ~2001
815187227652149781710 ~2002
815211983163042396710 ~2001
815252723163050544710 ~2001
815304013489182407910 ~2002
815314261489188556710 ~2002
815315771163063154310 ~2001
815337311163067462310 ~2001
8153644573913749393711 ~2004
815370911652296728910 ~2002
Exponent Prime Factor Digits Year
815411123163082224710 ~2001
815413799163082759910 ~2001
8154437531304710004911 ~2003
815463059163092611910 ~2001
815486603163097320710 ~2001
815517611163103522310 ~2001
815528177652422541710 ~2002
815533739163106747910 ~2001
815539643163107928710 ~2001
815593763163118752710 ~2001
815598083163119616710 ~2001
815617871163123574310 ~2001
8156188491957485237711 ~2003
815622683163124536710 ~2001
815629583163125916710 ~2001
8156400791468152142311 ~2003
815677853489406711910 ~2002
815691341489414804710 ~2002
815700323163140064710 ~2001
815725193489435115910 ~2002
815728213489436927910 ~2002
815746979163149395910 ~2001
815752153489451291910 ~2002
815759291163151858310 ~2001
815764199163152839910 ~2001
Exponent Prime Factor Digits Year
8157861135221031123311 ~2004
8157864672773673987911 ~2004
815815621489489372710 ~2002
815819423163163884710 ~2001
815865839163173167910 ~2001
815880179163176035910 ~2001
815913803163182760710 ~2001
815935061652748048910 ~2002
815946251163189250310 ~2001
815985671163197134310 ~2001
816048251163209650310 ~2001
816056243163211248710 ~2001
816136523163227304710 ~2001
816167879163233575910 ~2001
8161754172448526251111 ~2003
816208201489724920710 ~2002
816242363163248472710 ~2001
816291557489774934310 ~2002
816293053489775831910 ~2002
816314951163262990310 ~2001
816335099163267019910 ~2001
8163772972449131891111 ~2003
816420119163284023910 ~2001
816426899163285379910 ~2001
816509231163301846310 ~2001
Exponent Prime Factor Digits Year
816521963163304392710 ~2001
816535931163307186310 ~2001
8165408478655332978311 ~2005
816548353489929011910 ~2002
8165689931796451784711 ~2003
816574403163314880710 ~2001
81664480931195831703912 ~2006
816706199163341239910 ~2001
8167557431306809188911 ~2003
816761639163352327910 ~2001
816769991163353998310 ~2001
816771793490063075910 ~2002
816774191163354838310 ~2001
816796451163359290310 ~2001
816818291163363658310 ~2001
816864599163372919910 ~2001
816882797490129678310 ~2002
816895571163379114310 ~2001
816897239163379447910 ~2001
816898813490139287910 ~2002
816922241490153344710 ~2002
816939899163387979910 ~2001
816951419163390283910 ~2001
8169687591960725021711 ~2003
816969623163393924710 ~2001
Home
4.724.182 digits
e-mail
25-04-13