Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
789834119157966823910 ~2000
789834719157966943910 ~2000
789860471157972094310 ~2000
789869219157973843910 ~2000
789896257473937754310 ~2002
789905807631924645710 ~2002
7899119817583155017711 ~2005
789912317473947390310 ~2002
789932303157986460710 ~2000
789933563157986712710 ~2000
7899437512053853752711 ~2003
789963491157992698310 ~2000
789978911157995782310 ~2000
790055099158011019910 ~2000
790082017474049210310 ~2002
790096799158019359910 ~2000
790119923158023984710 ~2000
790123391158024678310 ~2000
790133849632107079310 ~2002
790140443158028088710 ~2000
790161503158032300710 ~2000
790179059158035811910 ~2000
790189931158037986310 ~2000
790191191158038238310 ~2000
790195823158039164710 ~2000
Exponent Prime Factor Digits Year
790209911158041982310 ~2000
790214879158042975910 ~2000
790246031158049206310 ~2000
790264379158052875910 ~2000
790270139158054027910 ~2000
790270199158054039910 ~2000
790326421474195852710 ~2002
790329539158065907910 ~2000
790338817474203290310 ~2002
790352939158070587910 ~2000
790363943158072788710 ~2000
790380179158076035910 ~2000
790398431158079686310 ~2000
790405087790405087110 ~2002
790435619158087123910 ~2000
790441633474264979910 ~2002
790474259158094851910 ~2000
790487279632389823310 ~2002
790518719158103743910 ~2000
790541723158108344710 ~2000
7905587893162235156111 ~2004
790579631158115926310 ~2000
790585571158117114310 ~2000
790600541474360324710 ~2002
790615643158123128710 ~2000
Exponent Prime Factor Digits Year
790622603158124520710 ~2000
790641503158128300710 ~2000
7906558932371967679111 ~2003
790674701474404820710 ~2002
790728083158145616710 ~2000
790735921474441552710 ~2002
790741517474444910310 ~2002
790750463158150092710 ~2000
790758071158151614310 ~2000
790803281474481968710 ~2002
790814723158162944710 ~2000
790835261474501156710 ~2002
7908635171898072440911 ~2003
790873211158174642310 ~2000
790902071158180414310 ~2000
790909811158181962310 ~2000
790931417632745133710 ~2002
790949723158189944710 ~2000
791039303158207860710 ~2000
791049719158209943910 ~2000
791050391158210078310 ~2000
791051711158210342310 ~2000
791055311158211062310 ~2000
791055983158211196710 ~2000
791123897632899117710 ~2002
Exponent Prime Factor Digits Year
791128391158225678310 ~2000
791155657474693394310 ~2002
791165951158233190310 ~2000
791178959158235791910 ~2000
791188883158237776710 ~2000
791189153474713491910 ~2002
791213963158242792710 ~2000
791252783158250556710 ~2000
791268083158253616710 ~2000
791286311158257262310 ~2000
791308781474785268710 ~2002
791316479158263295910 ~2000
791325011158265002310 ~2000
791328899633063119310 ~2002
791364853474818911910 ~2002
7914091631266254660911 ~2003
791417633474850579910 ~2002
791418443158283688710 ~2000
791454659158290931910 ~2000
791474303158294860710 ~2000
791529779158305955910 ~2000
791533079633226463310 ~2002
791578523158315704710 ~2000
791582663158316532710 ~2000
791587631158317526310 ~2000
Home
4.724.182 digits
e-mail
25-04-13