Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
673220453403932271910 ~2001
673223591134644718310 ~2000
673226903134645380710 ~2000
673275899134655179910 ~2000
673281071134656214310 ~2000
673289483134657896710 ~2000
6733075731615938175311 ~2003
673312859134662571910 ~2000
673326209538660967310 ~2001
673375883134675176710 ~2000
673376591134675318310 ~2000
673391783134678356710 ~2000
6733989972020196991111 ~2003
673413593404048155910 ~2001
673419497404051698310 ~2001
673423511134684702310 ~2000
673470401538776320910 ~2001
673490711134698142310 ~2000
673504619134700923910 ~2000
673504813404102887910 ~2001
673510151134702030310 ~2000
673540463134708092710 ~2000
673599131134719826310 ~2000
6736032899026284072711 ~2004
673631411134726282310 ~2000
Exponent Prime Factor Digits Year
673640717538912573710 ~2001
673641359134728271910 ~2000
673647959134729591910 ~2000
673748363134749672710 ~2000
673784141404270484710 ~2001
673799039134759807910 ~2000
673804601539043680910 ~2001
673811291134762258310 ~2000
6738284595525393363911 ~2004
673832063134766412710 ~2000
673865459134773091910 ~2000
673873721404324232710 ~2001
673874609539099687310 ~2001
673878083134775616710 ~2000
673883291134776658310 ~2000
6738854471078216715311 ~2002
673889597404333758310 ~2001
673898063134779612710 ~2000
673916059673916059110 ~2002
673929779134785955910 ~2000
673994081539195264910 ~2001
674003221404401932710 ~2001
674004671134800934310 ~2000
674033159134806631910 ~2000
6740369832291725742311 ~2003
Exponent Prime Factor Digits Year
674037911134807582310 ~2000
674051831134810366310 ~2000
674076731134815346310 ~2000
674083297404449978310 ~2001
674104283134820856710 ~2000
674111159134822231910 ~2000
674113717404468230310 ~2001
674130623134826124710 ~2000
674137483674137483110 ~2002
6741377873370688935111 ~2003
674140451134828090310 ~2000
674146139134829227910 ~2000
674153159134830631910 ~2000
674156647674156647110 ~2002
674195831134839166310 ~2000
674198381404519028710 ~2001
674216531134843306310 ~2000
674222231134844446310 ~2000
674242883134848576710 ~2000
6742542536877393380711 ~2004
674259863134851972710 ~2000
674265491134853098310 ~2000
674275109943985152710 ~2002
674284001404570400710 ~2001
674309681404585808710 ~2001
Exponent Prime Factor Digits Year
674310863134862172710 ~2000
674325167539460133710 ~2001
674346791134869358310 ~2000
674371331134874266310 ~2000
674380331134876066310 ~2000
674385857539508685710 ~2001
674408183134881636710 ~2000
674413841539531072910 ~2001
674424563134884912710 ~2000
674424851134884970310 ~2000
674488943134897788710 ~2000
674525177404715106310 ~2001
674557441404734464710 ~2001
674562191134912438310 ~2000
674576159134915231910 ~2000
674585039134917007910 ~2000
674598959134919791910 ~2000
674614751134922950310 ~2000
6746225234857282165711 ~2004
674653223134930644710 ~2000
674668751134933750310 ~2000
674684741539747792910 ~2001
674691151674691151110 ~2002
6747458531079593364911 ~2002
674763671134952734310 ~2000
Home
4.843.404 digits
e-mail
25-06-08