Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
805164911161032982310 ~2001
805192439161038487910 ~2001
805198391161039678310 ~2001
805212581483127548710 ~2002
805228199161045639910 ~2001
805233839161046767910 ~2001
805241219161048243910 ~2001
805257317483154390310 ~2002
8052678673221071468111 ~2004
805284719161056943910 ~2001
805333631161066726310 ~2001
805340843161068168710 ~2001
805369451161073890310 ~2001
805384631161076926310 ~2001
805415951644332760910 ~2002
805432559161086511910 ~2001
805467857483280714310 ~2002
805484951644387960910 ~2002
805561019161112203910 ~2001
805572359161114471910 ~2001
805578239161115647910 ~2001
805582559161116511910 ~2001
805629179161125835910 ~2001
8056443112094675208711 ~2003
805667399161133479910 ~2001
Exponent Prime Factor Digits Year
805684501483410700710 ~2002
805705679161141135910 ~2001
805712123161142424710 ~2001
8057150691128001096711 ~2003
805717343161143468710 ~2001
805732223161146444710 ~2001
805766303161153260710 ~2001
8058081892417424567111 ~2003
805814939161162987910 ~2001
805840967644672773710 ~2002
805884361483530616710 ~2002
805910531161182106310 ~2001
805916123161183224710 ~2001
805952363161190472710 ~2001
805960501483576300710 ~2002
805960643161192128710 ~2001
8059746431289559428911 ~2003
806013899161202779910 ~2001
806042123161208424710 ~2001
806069783161213956710 ~2001
806072831161214566310 ~2001
806080883161216176710 ~2001
8061273671451029260711 ~2003
806142131161228426310 ~2001
806156723161231344710 ~2001
Exponent Prime Factor Digits Year
806172491161234498310 ~2001
806203201483721920710 ~2002
806225351161245070310 ~2001
806228317483736990310 ~2002
806274191161254838310 ~2001
806288051161257610310 ~2001
806293777483776266310 ~2002
806399591161279918310 ~2001
806412311161282462310 ~2001
8064213913870822676911 ~2004
806455943161291188710 ~2001
806490071161298014310 ~2001
806492003161298400710 ~2001
8065037571129105259911 ~2003
806520359161304071910 ~2001
806604983161320996710 ~2001
806609519161321903910 ~2001
806622203161324440710 ~2001
806625377645300301710 ~2002
8066404135807810973711 ~2004
8067014036453611224111 ~2004
806705521484023312710 ~2002
806743991161348798310 ~2001
8067657592581650428911 ~2004
806797991161359598310 ~2001
Exponent Prime Factor Digits Year
8068227891129551904711 ~2003
806934143161386828710 ~2001
806946719161389343910 ~2001
806975501484185300710 ~2002
8069937112582379875311 ~2004
806998693484199215910 ~2002
807008459161401691910 ~2001
807015311161403062310 ~2001
807019259161403851910 ~2001
807042023161408404710 ~2001
807044921484226952710 ~2002
807073937484244362310 ~2002
807126839161425367910 ~2001
807132299161426459910 ~2001
8071527193228610876111 ~2004
807164903161432980710 ~2001
807174239161434847910 ~2001
8071816511452926971911 ~2003
807190019161438003910 ~2001
807235391161447078310 ~2001
807266921484360152710 ~2002
8072753691130185516711 ~2003
807278519161455703910 ~2001
807319703161463940710 ~2001
807329821484397892710 ~2002
Home
4.724.182 digits
e-mail
25-04-13