Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
811123111811123111110 ~2002
811137479162227495910 ~2001
811144199162228839910 ~2001
811152299162230459910 ~2001
811153043162230608710 ~2001
811221791162244358310 ~2001
811263899162252779910 ~2001
811298281486778968710 ~2002
811332239162266447910 ~2001
8113493773894477009711 ~2004
811366163162273232710 ~2001
811397759162279551910 ~2001
811401743162280348710 ~2001
8114041571298246651311 ~2003
811404239162280847910 ~2001
811420949649136759310 ~2002
811427101486856260710 ~2002
811434307811434307110 ~2002
811455899162291179910 ~2001
811464443162292888710 ~2001
811484231162296846310 ~2001
811538219162307643910 ~2001
8115627531136187854311 ~2003
811576877486946126310 ~2002
811586233486951739910 ~2002
Exponent Prime Factor Digits Year
811597991162319598310 ~2001
811634891162326978310 ~2001
8116548531136316794311 ~2003
811657943162331588710 ~2001
811666613486999967910 ~2002
811669889649335911310 ~2002
811707371162341474310 ~2001
811728557649382845710 ~2002
811733291162346658310 ~2001
8117396531298783444911 ~2003
811755577487053346310 ~2002
811781471162356294310 ~2001
811788781487073268710 ~2002
811790051162358010310 ~2001
811820423162364084710 ~2001
811820819162364163910 ~2001
811843919162368783910 ~2001
8118590177631474759911 ~2005
811890337487134202310 ~2002
811911563162382312710 ~2001
811927943162385588710 ~2001
811937891162387578310 ~2001
811948663811948663110 ~2002
811973951162394790310 ~2001
811983671162396734310 ~2001
Exponent Prime Factor Digits Year
811997363162399472710 ~2001
812001161487200696710 ~2002
812037059162407411910 ~2001
812057483162411496710 ~2001
812102099162420419910 ~2001
812109971162421994310 ~2001
812170559649736447310 ~2002
812195771162439154310 ~2001
812218943162443788710 ~2001
812231911812231911110 ~2002
8122460691949390565711 ~2003
812261231162452246310 ~2001
812302391162460478310 ~2001
812304071162460814310 ~2001
812309279162461855910 ~2001
812316803162463360710 ~2001
812328001487396800710 ~2002
812350439162470087910 ~2001
812380421487428252710 ~2002
812389997487433998310 ~2002
812399839812399839110 ~2002
812444377487466626310 ~2002
812449523162489904710 ~2001
812457323162491464710 ~2001
812468219649974575310 ~2002
Exponent Prime Factor Digits Year
812527043162505408710 ~2001
812541143162508228710 ~2001
812580253487548151910 ~2002
812583419162516683910 ~2001
812600843162520168710 ~2001
812613551162522710310 ~2001
812654159162530831910 ~2001
812655377487593226310 ~2002
812668079162533615910 ~2001
812670191162534038310 ~2001
8126869134388509330311 ~2004
812694119162538823910 ~2001
812725559162545111910 ~2001
812789947812789947110 ~2002
812809717487685830310 ~2002
812832239162566447910 ~2001
812857739162571547910 ~2001
812931923162586384710 ~2001
812946059650356847310 ~2002
812972879162594575910 ~2001
812996003162599200710 ~2001
813033971162606794310 ~2001
813051719162610343910 ~2001
813070463162614092710 ~2001
813128777487877266310 ~2002
Home
4.724.182 digits
e-mail
25-04-13