Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
816976703163395340710 ~2001
816984659163396931910 ~2001
817048019163409603910 ~2001
817065779163413155910 ~2001
817070183163414036710 ~2001
817095313490257187910 ~2002
817114657490268794310 ~2002
817123397490274038310 ~2002
817143731163428746310 ~2001
817155593490293355910 ~2002
8172027611307524417711 ~2003
8172044411307527105711 ~2003
817205009653764007310 ~2002
817212251163442450310 ~2001
817240751163448150310 ~2001
817245179163449035910 ~2001
817255451163451090310 ~2001
817260491163452098310 ~2001
817263563163452712710 ~2001
817283393490370035910 ~2002
817319771163463954310 ~2001
817406459163481291910 ~2001
817413743163482748710 ~2001
817459733490475839910 ~2002
817484231163496846310 ~2001
Exponent Prime Factor Digits Year
817485923163497184710 ~2001
8174957512125488952711 ~2003
817510103163502020710 ~2001
817547039163509407910 ~2001
817575299163515059910 ~2001
817576553490545931910 ~2002
817616099163523219910 ~2001
817622999163524599910 ~2001
817624679163524935910 ~2001
817630937490578562310 ~2002
817638323163527664710 ~2001
817641491163528298310 ~2001
817643003163528600710 ~2001
8176500771962360184911 ~2003
817713371163542674310 ~2001
817719671163543934310 ~2001
817751843163550368710 ~2001
817762019163552403910 ~2001
817772519163554503910 ~2001
817840871163568174310 ~2001
817900199163580039910 ~2001
817920613490752367910 ~2002
817999079163599815910 ~2001
818027279163605455910 ~2001
8180772291145308120711 ~2003
Exponent Prime Factor Digits Year
818081711163616342310 ~2001
818099819163619963910 ~2001
818128631163625726310 ~2001
818140693490884415910 ~2002
818145499818145499110 ~2002
818215283163643056710 ~2001
818268161490960896710 ~2002
818280899163656179910 ~2001
818284403163656880710 ~2001
818314151163662830310 ~2001
818357723163671544710 ~2001
818358613491015167910 ~2002
818390399163678079910 ~2001
818395439163679087910 ~2001
818445839163689167910 ~2001
818456351163691270310 ~2001
818462891163692578310 ~2001
818473027818473027110 ~2002
818478971163695794310 ~2001
8184866093110249114311 ~2004
818534159163706831910 ~2001
8185734113929152372911 ~2004
818580263163716052710 ~2001
818583071163716614310 ~2001
8185862819004449091111 ~2005
Exponent Prime Factor Digits Year
818599511163719902310 ~2001
818602199163720439910 ~2001
818612363163722472710 ~2001
818619239163723847910 ~2001
818650583163730116710 ~2001
818652899163730579910 ~2001
818694251163738850310 ~2001
818749873491249923910 ~2002
818776223163755244710 ~2001
818876581491325948710 ~2002
818884457491330674310 ~2002
818939783163787956710 ~2001
818942777491365666310 ~2002
8189501091146530152711 ~2003
818970569655176455310 ~2002
8189925191474186534311 ~2003
819003197491401918310 ~2002
819021323163804264710 ~2001
819105071163821014310 ~2001
819116591163823318310 ~2001
819144743163828948710 ~2001
8191561932457468579111 ~2003
819185879163837175910 ~2001
819188221491512932710 ~2002
8192779371146989111911 ~2003
Home
4.724.182 digits
e-mail
25-04-13