Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
827520923165504184710 ~2001
827528843165505768710 ~2001
827549819165509963910 ~2001
827584573496550743910 ~2002
827584931165516986310 ~2001
827594171165518834310 ~2001
827630651165526130310 ~2001
8276395871324223339311 ~2003
827666531165533306310 ~2001
827666837496600102310 ~2002
827672711165534542310 ~2001
827673719165534743910 ~2001
827674273496604563910 ~2002
827689679165537935910 ~2001
827701403165540280710 ~2001
827802719165560543910 ~2001
827810579165562115910 ~2001
8278157212483447163111 ~2004
827883893496730335910 ~2002
827884451165576890310 ~2001
827897579165579515910 ~2001
827901731165580346310 ~2001
827913253496747951910 ~2002
82791553728977043795112 ~2006
827916017662332813710 ~2002
Exponent Prime Factor Digits Year
827924039165584807910 ~2001
827968439165593687910 ~2001
827986391165597278310 ~2001
827987957496792774310 ~2002
827994059165598811910 ~2001
828015431165603086310 ~2001
828030971662424776910 ~2002
828039137496823482310 ~2002
828055391165611078310 ~2001
828075971165615194310 ~2001
828083843165616768710 ~2001
828139043165627808710 ~2001
828140699165628139910 ~2001
828154751165630950310 ~2001
828157381496894428710 ~2002
828211679165642335910 ~2001
828245471165649094310 ~2001
828251573496950943910 ~2002
828290051165658010310 ~2001
828323399165664679910 ~2001
828343877662675101710 ~2002
828356003165671200710 ~2001
828364637662691709710 ~2002
828420961497052576710 ~2002
828434363165686872710 ~2001
Exponent Prime Factor Digits Year
828439043165687808710 ~2001
828463763165692752710 ~2001
828468323165693664710 ~2001
828506663165701332710 ~2001
828547019165709403910 ~2001
828581731828581731110 ~2002
828661349662929079310 ~2002
828713783165742756710 ~2001
828725411662980328910 ~2002
828769597497261758310 ~2002
828809903165761980710 ~2001
828855059663084047310 ~2002
828905351165781070310 ~2001
828911519165782303910 ~2001
828938303165787660710 ~2001
828943403165788680710 ~2001
828961571165792314310 ~2001
828963491165792698310 ~2001
8289667811326346849711 ~2003
828974423165794884710 ~2001
828979103165795820710 ~2001
828981071165796214310 ~2001
829008671165801734310 ~2001
829015757663212605710 ~2002
8290214934642520360911 ~2004
Exponent Prime Factor Digits Year
829024403165804880710 ~2001
829077191165815438310 ~2001
829081741497449044710 ~2002
829085891165817178310 ~2001
8290959315969490703311 ~2004
829119719165823943910 ~2001
8291228212653193027311 ~2004
829180883165836176710 ~2001
829235651165847130310 ~2001
829239479165847895910 ~2001
829254071165850814310 ~2001
829276961663421568910 ~2002
829286281497571768710 ~2002
829290239165858047910 ~2001
8292906431326865028911 ~2003
829305601497583360710 ~2002
829313123165862624710 ~2001
829314659165862931910 ~2001
829324883165864976710 ~2001
829342823165868564710 ~2001
829363679165872735910 ~2001
8294035271492926348711 ~2003
829412879165882575910 ~2001
829438919165887783910 ~2001
829473301497683980710 ~2002
Home
4.724.182 digits
e-mail
25-04-13