Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
907064243181412848710 ~2001
907082531181416506310 ~2001
9070879816531033463311 ~2005
907098601544259160710 ~2002
907115543181423108710 ~2001
907132379181426475910 ~2001
907143031907143031110 ~2003
907155311181431062310 ~2001
907167419181433483910 ~2001
907185299181437059910 ~2001
907188239181437647910 ~2001
907219451181443890310 ~2001
907249901544349940710 ~2002
907250243181450048710 ~2001
907270139181454027910 ~2001
907285583181457116710 ~2001
907303451181460690310 ~2001
907315991181463198310 ~2001
907375169725900135310 ~2002
907376623907376623110 ~2003
907379639181475927910 ~2001
9073815891270334224711 ~2003
907398071181479614310 ~2001
907424369725939495310 ~2002
907435271181487054310 ~2001
Exponent Prime Factor Digits Year
907449611181489922310 ~2001
907454651181490930310 ~2001
90747063114519530096112 ~2006
9074877433629950972111 ~2004
907501643181500328710 ~2001
907518119181503623910 ~2001
907544219181508843910 ~2001
907592111181518422310 ~2001
907592303181518460710 ~2001
907629851181525970310 ~2001
907631891181526378310 ~2001
9076756731270745942311 ~2003
907678223181535644710 ~2001
907692011181538402310 ~2001
907700639181540127910 ~2001
907705283181541056710 ~2001
907721821544633092710 ~2002
907723931181544786310 ~2001
907757783181551556710 ~2001
907789763181557952710 ~2001
907802081544681248710 ~2002
907813499181562699910 ~2001
907885679181577135910 ~2001
907892339181578467910 ~2001
907910123181582024710 ~2001
Exponent Prime Factor Digits Year
907924883181584976710 ~2001
907939229726351383310 ~2002
9079649991634336998311 ~2003
908000111181600022310 ~2001
908008771908008771110 ~2003
908041907726433525710 ~2002
908062487726449989710 ~2002
908071679181614335910 ~2001
908083259181616651910 ~2001
908089271181617854310 ~2001
908090699726472559310 ~2002
908105771181621154310 ~2001
9081732193087788944711 ~2004
908235187908235187110 ~2003
908287223181657444710 ~2001
9083104192906593340911 ~2004
908313101726650480910 ~2002
908383319181676663910 ~2001
908390771181678154310 ~2001
908416501545049900710 ~2002
908471999726777599310 ~2002
908474771181694954310 ~2001
908479751181695950310 ~2001
908506871181701374310 ~2001
908534843181706968710 ~2001
Exponent Prime Factor Digits Year
908547131181709426310 ~2001
908641091181728218310 ~2001
908670071181734014310 ~2001
908671391181734278310 ~2001
908710031181742006310 ~2001
908731331181746266310 ~2001
908739311181747862310 ~2001
908794979181758995910 ~2001
908811479181762295910 ~2001
908812799181762559910 ~2001
908820851181764170310 ~2001
908838971181767794310 ~2001
908877191181775438310 ~2001
908918723181783744710 ~2001
9089188878180269983111 ~2005
908935463181787092710 ~2001
908963831181792766310 ~2001
908974211181794842310 ~2001
908979299181795859910 ~2001
909006017727204813710 ~2002
909014363181802872710 ~2001
909049679181809935910 ~2001
909060127909060127110 ~2003
909063539181812707910 ~2001
909063583909063583110 ~2003
Home
4.724.182 digits
e-mail
25-04-13