Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1004121479200824295910 ~2001
10041456911807462243911 ~2004
10042312692410155045711 ~2004
10042564271004256427111 ~2003
1004292491200858498310 ~2001
10043271175423366431911 ~2005
1004331539200866307910 ~2001
1004332961602599776710 ~2002
1004347919200869583910 ~2001
1004352683200870536710 ~2001
1004383931200876786310 ~2001
1004402093602641255910 ~2002
1004448443200889688710 ~2001
1004530679200906135910 ~2001
1004553479200910695910 ~2001
1004562551200912510310 ~2001
10045955111808271919911 ~2004
1004618801602771280710 ~2002
10046323733214823593711 ~2004
1004655059200931011910 ~2001
1004660411200932082310 ~2001
1004705651200941130310 ~2001
1004783999200956799910 ~2001
1004819099200963819910 ~2001
1004836643200967328710 ~2001
Exponent Prime Factor Digits Year
1004836753602902051910 ~2002
1004919731200983946310 ~2001
1004950559200990111910 ~2001
1004955071200991014310 ~2001
1005030623201006124710 ~2001
1005050831201010166310 ~2001
1005083531201016706310 ~2001
1005091859201018371910 ~2001
1005167711201033542310 ~2001
1005206831201041366310 ~2001
1005237479201047495910 ~2001
1005317723201063544710 ~2001
1005327959201065591910 ~2001
10053642538646132575911 ~2005
1005472379201094475910 ~2001
1005478559201095711910 ~2001
1005494471201098894310 ~2001
1005494753603296851910 ~2002
1005504959201100991910 ~2001
1005509969804407975310 ~2003
1005550333603330199910 ~2002
1005577511201115502310 ~2001
1005596353603357811910 ~2002
1005669737804535789710 ~2003
1005682631201136526310 ~2001
Exponent Prime Factor Digits Year
1005700499201140099910 ~2001
1005709721804567776910 ~2003
1005717287804573829710 ~2003
1005761759201152351910 ~2001
1005806861603484116710 ~2002
1005852131201170426310 ~2001
1005904589804723671310 ~2003
10059074114224811126311 ~2005
1005910021603546012710 ~2002
10059489719858299915911 ~2005
10059831071005983107111 ~2003
1006005541603603324710 ~2002
1006006019201201203910 ~2001
1006056983201211396710 ~2001
1006073459201214691910 ~2001
1006097819201219563910 ~2001
1006101923201220384710 ~2001
10061069293018320787111 ~2004
1006112543201222508710 ~2001
1006122671201224534310 ~2001
1006124501804899600910 ~2003
1006129331201225866310 ~2001
1006151183201230236710 ~2001
1006153091201230618310 ~2001
1006191377603714826310 ~2002
Exponent Prime Factor Digits Year
1006198441603719064710 ~2002
10062031731408684442311 ~2003
1006256519201251303910 ~2001
10062728871811291196711 ~2004
1006331369805065095310 ~2003
1006373663201274732710 ~2001
10064312271811576208711 ~2004
1006453751201290750310 ~2001
10065292394831340347311 ~2005
1006549259201309851910 ~2001
1006596743201319348710 ~2001
1006598399201319679910 ~2001
1006604639201320927910 ~2001
1006652963201330592710 ~2001
1006659061603995436710 ~2002
1006670363201334072710 ~2001
1006692443201338488710 ~2001
1006697963201339592710 ~2001
1006770839201354167910 ~2001
1006772303201354460710 ~2001
10067849171610855867311 ~2004
10068236834228659468711 ~2005
1006843919201368783910 ~2001
1006871953604123171910 ~2002
1006877777604126666310 ~2002
Home
4.724.182 digits
e-mail
25-04-13