Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
915526091183105218310 ~2001
915531059183106211910 ~2001
9155573692197337685711 ~2004
915593219183118643910 ~2001
915595283183119056710 ~2001
915606203183121240710 ~2001
915654359183130871910 ~2001
915662357732529885710 ~2002
9156814792197635549711 ~2004
915681719183136343910 ~2001
915714539183142907910 ~2001
915743051183148610310 ~2001
915758111183151622310 ~2001
915761039183152207910 ~2001
915761837549457102310 ~2002
915775829732620663310 ~2002
915788063183157612710 ~2001
915790703183158140710 ~2001
915831577549498946310 ~2002
915836951183167390310 ~2001
915837317549502390310 ~2002
915860201732688160910 ~2002
915861767732689413710 ~2002
915881363183176272710 ~2001
915887183183177436710 ~2001
Exponent Prime Factor Digits Year
915896801732717440910 ~2002
915946523183189304710 ~2001
915978971183195794310 ~2001
915980363183196072710 ~2001
916046531183209306310 ~2001
916109543183221908710 ~2001
916121819183224363910 ~2001
9161446571465831451311 ~2003
9161623074397579073711 ~2004
916186223183237244710 ~2001
916207199183241439910 ~2001
916230671183246134310 ~2001
916249199183249839910 ~2001
916251419183250283910 ~2001
916265879183253175910 ~2001
916278263183255652710 ~2001
916304579183260915910 ~2001
916318693549791215910 ~2002
916328531183265706310 ~2001
916330703183266140710 ~2001
916351979183270395910 ~2001
916358257549814954310 ~2002
916365311183273062310 ~2001
916367183183273436710 ~2001
916378139183275627910 ~2001
Exponent Prime Factor Digits Year
916381871183276374310 ~2001
9164403792199456909711 ~2004
916519027916519027110 ~2003
9165244612932878275311 ~2004
916525381549915228710 ~2002
916546199183309239910 ~2001
9166206892199889653711 ~2004
916640441733312352910 ~2002
916660583183332116710 ~2001
916674449733339559310 ~2002
916757603183351520710 ~2001
916794551183358910310 ~2001
916818493550091095910 ~2002
9168245639534975455311 ~2005
9169119732017206340711 ~2004
916919677550151806310 ~2002
916957799733566239310 ~2002
916981823183396364710 ~2001
916987979183397595910 ~2001
917003291183400658310 ~2001
917022863183404572710 ~2001
917023643183404728710 ~2001
917147639183429527910 ~2001
917150543183430108710 ~2001
917151971183430394310 ~2001
Exponent Prime Factor Digits Year
917167523183433504710 ~2001
917173177550303906310 ~2002
917213093550327855910 ~2002
917222963183444592710 ~2001
917227799183445559910 ~2001
91723600910273043300912 ~2005
917258761550355256710 ~2002
91729390721464677423912 ~2006
917308079733846463310 ~2002
917321831183464366310 ~2001
917327003183465400710 ~2001
917330423183466084710 ~2001
917390003183478000710 ~2001
917401559183480311910 ~2001
917418611183483722310 ~2001
917473211183494642310 ~2001
917481749733985399310 ~2002
917506631183501326310 ~2001
917525363183505072710 ~2001
917540999183508199910 ~2001
917566831917566831110 ~2003
917574071183514814310 ~2001
917576677550546006310 ~2002
917580071183516014310 ~2001
9175901332752770399111 ~2004
Home
4.724.182 digits
e-mail
25-04-13