Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
913253879182650775910 ~2001
913263371182652674310 ~2001
913275491182655098310 ~2001
913296103913296103110 ~2003
913348889730679111310 ~2002
913368941730695152910 ~2002
913379639182675927910 ~2001
913403723182680744710 ~2001
913418183182683636710 ~2001
913440487913440487110 ~2003
913450943182690188710 ~2001
913474621548084772710 ~2002
913475999182695199910 ~2001
913488341548093004710 ~2002
913533617730826893710 ~2002
913540403182708080710 ~2001
9135486733654194692111 ~2004
913562543182712508710 ~2001
913570061548142036710 ~2002
913587869730870295310 ~2002
913611053548166631910 ~2002
913684721548210832710 ~2002
913709957548225974310 ~2002
913754111182750822310 ~2001
913854743182770948710 ~2001
Exponent Prime Factor Digits Year
913899131182779826310 ~2001
913899851182779970310 ~2001
913951901548371140710 ~2002
913979567731183653710 ~2002
913995011182799002310 ~2001
9140001371462400219311 ~2003
914016821548410092710 ~2002
914018219182803643910 ~2001
914023991182804798310 ~2001
914025389731220311310 ~2002
914031743182806348710 ~2001
914037479182807495910 ~2001
914039183182807836710 ~2001
914055691914055691110 ~2003
914083811182816762310 ~2001
91414444313163679979312 ~2006
914191913548515147910 ~2002
914258459182851691910 ~2001
914264951182852990310 ~2001
914266319182853263910 ~2001
914310563182862112710 ~2001
914326139182865227910 ~2001
914336903182867380710 ~2001
914365259731492207310 ~2002
914437003914437003110 ~2003
Exponent Prime Factor Digits Year
914460479182892095910 ~2001
914461871182892374310 ~2001
914468531182893706310 ~2001
914469299182893859910 ~2001
914501579182900315910 ~2001
914528291182905658310 ~2001
9145302132011966468711 ~2004
914534267731627413710 ~2002
914544479182908895910 ~2001
914564603182912920710 ~2001
914574263182914852710 ~2001
914574383182914876710 ~2001
914575631182915126310 ~2001
9145907111646263279911 ~2003
9146080391646294470311 ~2003
914613671182922734310 ~2001
914715337548829202310 ~2002
914764451182952890310 ~2001
9147645732012482060711 ~2004
914777663182955532710 ~2001
914814779182962955910 ~2001
9148411131280777558311 ~2003
914849843182969968710 ~2001
914864999182972999910 ~2001
914871599182974319910 ~2001
Exponent Prime Factor Digits Year
9149191012744757303111 ~2004
914932253548959351910 ~2002
914993483182998696710 ~2001
915054323183010864710 ~2001
915067931183013586310 ~2001
915125663183025132710 ~2001
915127319183025463910 ~2001
915135191183027038310 ~2001
915159611183031922310 ~2001
915171359183034271910 ~2001
915174971183034994310 ~2001
9151897633660759052111 ~2004
915194543183038908710 ~2001
915209101549125460710 ~2002
915240239183048047910 ~2001
9152473132196593551311 ~2004
915283253549169951910 ~2002
915324539732259631310 ~2002
915350147732280117710 ~2002
915365543183073108710 ~2001
915389399183077879910 ~2001
915408779183081755910 ~2001
915437903183087580710 ~2001
91548661961520700796912 ~2007
915503399183100679910 ~2001
Home
4.724.182 digits
e-mail
25-04-13