Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
966891839193378367910 ~2001
966895277773516221710 ~2003
966897779193379555910 ~2001
966934043193386808710 ~2001
966939191193387838310 ~2001
966949499193389899910 ~2001
966988391193397678310 ~2001
967034543193406908710 ~2001
967047797773638237710 ~2003
9670511872320922848911 ~2004
967059323193411864710 ~2001
967105703193421140710 ~2001
967155779193431155910 ~2001
967242383193448476710 ~2001
967242797580345678310 ~2002
967272623193454524710 ~2001
967349267773879413710 ~2003
967383311193476662310 ~2001
967396379193479275910 ~2001
9674299491354401928711 ~2003
967447499193489499910 ~2001
967465847773972677710 ~2003
967472963193494592710 ~2001
967496723193499344710 ~2001
967500419193500083910 ~2001
Exponent Prime Factor Digits Year
9675086271741515528711 ~2004
967517519774014015310 ~2003
967528193580516915910 ~2002
967544003193508800710 ~2001
967551779193510355910 ~2001
967592369774073895310 ~2003
967595423193519084710 ~2001
9675997993870399196111 ~2004
967627513580576507910 ~2002
967629119193525823910 ~2001
967637401580582440710 ~2002
967671839193534367910 ~2001
967691987774153589710 ~2003
967696451193539290310 ~2001
967742063193548412710 ~2001
967746389774197111310 ~2003
9677554932129062084711 ~2004
967771993580663195910 ~2002
967776071774220856910 ~2003
967811063193562212710 ~2001
967835171193567034310 ~2001
967838771193567754310 ~2001
967854361580712616710 ~2002
967884059193576811910 ~2001
967911017580746610310 ~2002
Exponent Prime Factor Digits Year
967914119193582823910 ~2001
967925639193585127910 ~2001
967947971193589594310 ~2001
967968671774374936910 ~2003
967973351193594670310 ~2001
967982153580789291910 ~2002
968005943193601188710 ~2001
968013131193602626310 ~2001
968018041580810824710 ~2002
968026853580816111910 ~2002
968052203193610440710 ~2001
968108483193621696710 ~2001
968110943193622188710 ~2001
968120093580872055910 ~2002
968153843193630768710 ~2001
968163611193632722310 ~2001
968249231193649846310 ~2001
968253323193650664710 ~2001
968256011193651202310 ~2001
968262067968262067110 ~2003
968278523193655704710 ~2001
968314631774651704910 ~2003
968318779968318779110 ~2003
968327159193665431910 ~2001
968353871193670774310 ~2001
Exponent Prime Factor Digits Year
968398307774718645710 ~2003
968413571193682714310 ~2001
968415419193683083910 ~2001
968423243193684648710 ~2001
968440199193688039910 ~2001
968457199968457199110 ~2003
968484059193696811910 ~2001
968486153581091691910 ~2002
968514557581108734310 ~2002
968517401774813920910 ~2003
9685364213099316547311 ~2004
9685670514067981614311 ~2004
968579897581147938310 ~2002
968665403193733080710 ~2001
968680571774944456910 ~2003
968684461581210676710 ~2002
968731163193746232710 ~2001
968746841581248104710 ~2002
968755841775004672910 ~2003
968773931193754786310 ~2001
968804951193760990310 ~2001
968826779193765355910 ~2001
968860619193772123910 ~2001
968901079968901079110 ~2003
968924219193784843910 ~2001
Home
4.724.182 digits
e-mail
25-04-13