Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
906405743181281148710 ~2001
906435191181287038310 ~2001
906451499181290299910 ~2001
906487577543892546310 ~2002
9065007314351203508911 ~2004
9065025011450404001711 ~2003
9065317336527028477711 ~2005
906565763181313152710 ~2001
906601439181320287910 ~2001
906609839181321967910 ~2001
906613223181322644710 ~2001
906648059181329611910 ~2001
906664403181332880710 ~2001
906689123181337824710 ~2001
906712643181342528710 ~2001
906743759181348751910 ~2001
906747511906747511110 ~2003
906761363181352272710 ~2001
906765539181353107910 ~2001
906800171181360034310 ~2001
9068050214352664100911 ~2004
906811319181362263910 ~2001
906849877544109926310 ~2002
906852899181370579910 ~2001
906853319181370663910 ~2001
Exponent Prime Factor Digits Year
906881897725505517710 ~2002
906900083181380016710 ~2001
906941603181388320710 ~2001
9069678011451148481711 ~2003
906979691181395938310 ~2001
907023059181404611910 ~2001
907043723181408744710 ~2001
907064243181412848710 ~2001
907082531181416506310 ~2001
9070879816531033463311 ~2005
907098601544259160710 ~2002
907115543181423108710 ~2001
907132379181426475910 ~2001
907143031907143031110 ~2003
907155311181431062310 ~2001
907167419181433483910 ~2001
907185299181437059910 ~2001
907188239181437647910 ~2001
907214227907214227110 ~2003
907219451181443890310 ~2001
907249901544349940710 ~2002
907250243181450048710 ~2001
907270139181454027910 ~2001
907285583181457116710 ~2001
907303451181460690310 ~2001
Exponent Prime Factor Digits Year
907315991181463198310 ~2001
907375169725900135310 ~2002
907376623907376623110 ~2003
907379639181475927910 ~2001
9073815891270334224711 ~2003
907398071181479614310 ~2001
907424369725939495310 ~2002
907435271181487054310 ~2001
907449611181489922310 ~2001
907454651181490930310 ~2001
90747063114519530096112 ~2006
9074877433629950972111 ~2004
907501643181500328710 ~2001
907518119181503623910 ~2001
907544219181508843910 ~2001
907592111181518422310 ~2001
907592303181518460710 ~2001
907629851181525970310 ~2001
907631891181526378310 ~2001
9076756731270745942311 ~2003
907678223181535644710 ~2001
907692011181538402310 ~2001
907700639181540127910 ~2001
907705283181541056710 ~2001
907721821544633092710 ~2002
Exponent Prime Factor Digits Year
907723931181544786310 ~2001
907751699181550339910 ~2001
907757783181551556710 ~2001
907789763181557952710 ~2001
907802081544681248710 ~2002
907813499181562699910 ~2001
907885679181577135910 ~2001
907892339181578467910 ~2001
907910123181582024710 ~2001
907924883181584976710 ~2001
907939229726351383310 ~2002
9079649991634336998311 ~2003
908000111181600022310 ~2001
908008771908008771110 ~2003
908041907726433525710 ~2002
908062487726449989710 ~2002
908071679181614335910 ~2001
908083259181616651910 ~2001
908089271181617854310 ~2001
908090699726472559310 ~2002
908105771181621154310 ~2001
9081732193087788944711 ~2004
908235187908235187110 ~2003
908287223181657444710 ~2001
9083104192906593340911 ~2004
Home
4.843.404 digits
e-mail
25-06-08