Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
938089343187617868710 ~2001
938122439187624487910 ~2001
938127919938127919110 ~2003
938142731750514184910 ~2003
938144183187628836710 ~2001
938176573562905943910 ~2002
938228579187645715910 ~2001
938308643187661728710 ~2001
938326439187665287910 ~2001
938371463187674292710 ~2001
938390423187678084710 ~2001
938442161563065296710 ~2002
938445161750756128910 ~2003
93850070923274817583312 ~2006
938502863187700572710 ~2001
938604203187720840710 ~2001
938613323187722664710 ~2001
9386406675444115868711 ~2005
938646431187729286310 ~2001
938649479187729895910 ~2001
938653679187730735910 ~2001
938670959187734191910 ~2001
938672879187734575910 ~2001
938704031187740806310 ~2001
938755151187751030310 ~2001
Exponent Prime Factor Digits Year
938834921563300952710 ~2002
938859191187771838310 ~2001
938860463187772092710 ~2001
938863043187772608710 ~2001
938891231187778246310 ~2001
938902241563341344710 ~2002
938926433563355859910 ~2002
938943623187788724710 ~2001
938956871187791374310 ~2001
938977499187795499910 ~2001
939001751187800350310 ~2001
939044399187808879910 ~2001
939115043187823008710 ~2001
939142871187828574310 ~2001
939163523187832704710 ~2001
939194951751355960910 ~2003
939222803187844560710 ~2001
939239771187847954310 ~2001
939266173563559703910 ~2002
939282923187856584710 ~2001
939288671187857734310 ~2001
939347819187869563910 ~2001
939398483187879696710 ~2001
939399689751519751310 ~2003
939424679187884935910 ~2001
Exponent Prime Factor Digits Year
9394559393006259004911 ~2004
939456191751564952910 ~2003
939468251187893650310 ~2001
939485819187897163910 ~2001
939499021563699412710 ~2002
939521783187904356710 ~2001
939524167939524167110 ~2003
939561383187912276710 ~2001
939581039187916207910 ~2001
939581311939581311110 ~2003
939584759187916951910 ~2001
939584813563750887910 ~2002
939637271187927454310 ~2001
939658523187931704710 ~2001
939670211187934042310 ~2001
939679831939679831110 ~2003
939700031187940006310 ~2001
939701963187940392710 ~2001
939738323187947664710 ~2001
939783961563870376710 ~2002
939791291187958258310 ~2001
939806099187961219910 ~2001
939822901563893740710 ~2002
939827159187965431910 ~2001
9398464876202986814311 ~2005
Exponent Prime Factor Digits Year
939919691187983938310 ~2001
939940019187988003910 ~2001
939945719187989143910 ~2001
9399572692819871807111 ~2004
939977771187995554310 ~2001
9400215492820064647111 ~2004
940049171188009834310 ~2001
940093991188018798310 ~2001
940111379188022275910 ~2001
940169123188033824710 ~2001
940182179188036435910 ~2001
940202831188040566310 ~2001
940231763188046352710 ~2001
940243321564145992710 ~2002
940249619188049923910 ~2001
940269443188053888710 ~2001
940323563188064712710 ~2001
940335937564201562310 ~2002
9403443111692619759911 ~2003
940353991940353991110 ~2003
940354621564212772710 ~2002
940375811188075162310 ~2001
940402163188080432710 ~2001
940413967940413967110 ~2003
9404154711692747847911 ~2003
Home
4.843.404 digits
e-mail
25-06-08