Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1019611751203922350310 ~2001
1019650343203930068710 ~2001
1019732933611839759910 ~2003
10197400493263168156911 ~2004
1019905511203981102310 ~2001
1019956571203991314310 ~2001
1019957273611974363910 ~2003
1020007031204001406310 ~2001
1020012493612007495910 ~2003
1020024359204004871910 ~2001
1020029771816023816910 ~2003
1020064169816051335310 ~2003
1020083843204016768710 ~2001
1020083891204016778310 ~2001
1020095099204019019910 ~2001
1020119279204023855910 ~2001
10201246437344897429711 ~2005
1020157031204031406310 ~2001
1020238883204047776710 ~2001
1020252251204050450310 ~2001
1020286031204057206310 ~2001
10203025871020302587111 ~2003
1020316343204063268710 ~2001
1020323879204064775910 ~2001
1020380423204076084710 ~2001
Exponent Prime Factor Digits Year
1020383471204076694310 ~2001
1020405341612243204710 ~2003
1020431441816345152910 ~2003
1020456097612273658310 ~2003
1020458531204091706310 ~2001
1020475451204095090310 ~2001
1020500617612300370310 ~2003
1020525413612315247910 ~2003
1020568091204113618310 ~2001
1020617183204123436710 ~2001
102064020736130663327912 ~2007
1020640403204128080710 ~2001
1020658643204131728710 ~2001
1020671819204134363910 ~2001
1020704579204140915910 ~2001
1020717197612430318310 ~2003
1020722471204144494310 ~2001
1020860051204172010310 ~2001
1020881651204176330310 ~2001
1020895259204179051910 ~2001
1020898553612539131910 ~2003
10209085013062725503111 ~2004
1020983273612589963910 ~2003
1021017083204203416710 ~2001
1021028471204205694310 ~2001
Exponent Prime Factor Digits Year
1021044257612626554310 ~2003
1021044263204208852710 ~2001
10210707071837927272711 ~2004
10211099831021109983111 ~2003
1021110421612666252710 ~2003
1021110971204222194310 ~2001
1021113239204222647910 ~2001
1021143037612685822310 ~2003
1021159091204231818310 ~2001
10211769671021176967111 ~2003
1021219931204243986310 ~2001
10212961812246851598311 ~2004
1021307363204261472710 ~2001
1021326203204265240710 ~2001
1021379519204275903910 ~2001
1021402691204280538310 ~2001
1021451603204290320710 ~2001
1021465223204293044710 ~2001
1021488491204297698310 ~2001
1021502737612901642310 ~2003
10215124871838722476711 ~2004
1021554419204310883910 ~2001
1021558523204311704710 ~2001
1021570871204314174310 ~2001
10215977838377101820711 ~2005
Exponent Prime Factor Digits Year
10216130931430258330311 ~2003
1021618597612971158310 ~2003
1021638983204327796710 ~2001
1021712171204342434310 ~2001
1021869899204373979910 ~2001
102189552714102158272712 ~2006
1021914983204382996710 ~2001
1021976723204395344710 ~2001
1021984417613190650310 ~2003
1021991783204398356710 ~2001
1021999621613199772710 ~2003
1022004299204400859910 ~2001
10220487191022048719111 ~2003
1022080427817664341710 ~2003
1022092301613255380710 ~2003
1022096521613257912710 ~2003
1022147051204429410310 ~2001
1022154719204430943910 ~2001
1022170463204434092710 ~2001
10221995711022199571111 ~2003
1022233907817787125710 ~2003
1022238251204447650310 ~2001
1022246441613347864710 ~2003
1022276771204455354310 ~2001
1022311403204462280710 ~2001
Home
4.724.182 digits
e-mail
25-04-13