Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1022311943204462388710 ~2001
1022345459204469091910 ~2001
10223977375725427327311 ~2005
1022411723204482344710 ~2001
1022416379204483275910 ~2001
1022423543204484708710 ~2001
1022428717613457230310 ~2003
1022475791204495158310 ~2001
1022511131204502226310 ~2001
1022512763204502552710 ~2001
1022556191204511238310 ~2001
10225878611636140577711 ~2004
1022598851204519770310 ~2001
1022666633613599979910 ~2003
1022671889818137511310 ~2003
1022694203204538840710 ~2001
1022729303204545860710 ~2001
1022775863204555172710 ~2001
1022781299204556259910 ~2001
1022789459204557891910 ~2001
1022793203204558640710 ~2001
1022857091204571418310 ~2001
1022888411204577682310 ~2001
1022904359204580871910 ~2001
1022953271204590654310 ~2001
Exponent Prime Factor Digits Year
1022958011204591602310 ~2001
1022982263204596452710 ~2001
1023017591204603518310 ~2001
10230773831023077383111 ~2003
1023078839204615767910 ~2001
1023093083204618616710 ~2001
10230987011636957921711 ~2004
1023136571204627314310 ~2001
1023210983204642196710 ~2001
1023237311204647462310 ~2001
1023243839204648767910 ~2001
1023270869818616695310 ~2003
1023294683204658936710 ~2001
1023300563204660112710 ~2001
1023304571204660914310 ~2001
1023317651204663530310 ~2001
10233508931637361428911 ~2004
1023417779204683555910 ~2001
1023428753614057251910 ~2003
10234332071023433207111 ~2003
1023444371204688874310 ~2001
1023457871204691574310 ~2001
1023463829818771063310 ~2003
1023465659204693131910 ~2001
1023496283204699256710 ~2001
Exponent Prime Factor Digits Year
1023503171204700634310 ~2001
1023522023204704404710 ~2001
1023534923204706984710 ~2001
1023605123204721024710 ~2001
1023618551204723710310 ~2001
1023654119204730823910 ~2001
1023691079204738215910 ~2001
1023699023204739804710 ~2001
1023721379204744275910 ~2001
1023724763204744952710 ~2001
10237404232456977015311 ~2004
1023749819204749963910 ~2001
1023754031204750806310 ~2001
1023842243204768448710 ~2001
1023917171204783434310 ~2001
1023995543204799108710 ~2001
1024048979204809795910 ~2001
1024136999204827399910 ~2001
1024143143204828628710 ~2001
1024149551204829910310 ~2001
10242722177989323292711 ~2005
1024286951204857390310 ~2001
1024289543204857908710 ~2001
1024306799204861359910 ~2001
1024409843204881968710 ~2001
Exponent Prime Factor Digits Year
1024456613614673967910 ~2003
1024551191204910238310 ~2001
10245763097991695210311 ~2005
10245782231024578223111 ~2003
10245811636557319443311 ~2005
1024585403204917080710 ~2001
1024591091204918218310 ~2001
1024610177614766106310 ~2003
10246266431024626643111 ~2003
1024675979204935195910 ~2001
1024693253614815951910 ~2003
1024717019204943403910 ~2001
1024722071204944414310 ~2001
1024771019204954203910 ~2001
1024776443204955288710 ~2001
1024795631204959126310 ~2001
1024819379819855503310 ~2003
1024856639204971327910 ~2001
1024860071204972014310 ~2001
1024876417614925850310 ~2003
10248857692459725845711 ~2004
1024902143204980428710 ~2001
10249155431024915543111 ~2003
1024930139204986027910 ~2001
1024945739204989147910 ~2001
Home
4.724.182 digits
e-mail
25-04-13