Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1056738359211347671910 ~2001
1056860713634116427910 ~2003
1056874271845499416910 ~2003
1056882719211376543910 ~2001
1056904319211380863910 ~2001
1056956951211391390310 ~2001
1056957131211391426310 ~2001
1056962591211392518310 ~2001
1057099259211419851910 ~2001
1057135979211427195910 ~2001
1057137997634282798310 ~2003
1057151099211430219910 ~2001
1057176563211435312710 ~2001
1057204991845763992910 ~2003
1057213343211442668710 ~2001
10572232631057223263111 ~2003
1057257083211451416710 ~2001
1057291751211458350310 ~2001
10573468973172040691111 ~2004
1057372499211474499910 ~2001
1057375043211475008710 ~2001
1057412963211482592710 ~2001
1057453751211490750310 ~2001
1057455863211491172710 ~2001
10574572435287286215111 ~2005
Exponent Prime Factor Digits Year
1057582271211516454310 ~2001
1057588043211517608710 ~2001
1057616159211523231910 ~2001
1057631657846105325710 ~2003
1057632743211526548710 ~2001
1057648283211529656710 ~2001
1057702031211540406310 ~2001
10578451271057845127111 ~2003
1057862681846290144910 ~2003
1057862999211572599910 ~2001
1057869563211573912710 ~2001
1057905119211581023910 ~2001
1057927319211585463910 ~2001
1057985723211597144710 ~2001
1057990751211598150310 ~2001
1058011763211602352710 ~2001
1058031479211606295910 ~2001
1058046971211609394310 ~2001
1058052659211610531910 ~2001
10580554212327721926311 ~2004
1058082299211616459910 ~2001
1058109553634865731910 ~2003
1058152619211630523910 ~2001
1058157491211631498310 ~2001
1058175641634905384710 ~2003
Exponent Prime Factor Digits Year
1058190071211638014310 ~2001
1058251703211650340710 ~2001
1058293199211658639910 ~2001
1058307359211661471910 ~2001
1058308739211661747910 ~2001
1058347079211669415910 ~2001
1058357939211671587910 ~2001
1058370431211674086310 ~2001
10583756231058375623111 ~2003
1058400851211680170310 ~2001
1058443703211688740710 ~2001
1058446583211689316710 ~2001
1058448263211689652710 ~2001
1058488751211697750310 ~2001
1058515571211703114310 ~2001
1058535743211707148710 ~2001
1058542931211708586310 ~2001
1058555833635133499910 ~2003
1058556743211711348710 ~2001
1058576819211715363910 ~2001
1058595623211719124710 ~2001
1058622457635173474310 ~2003
1058662037635197222310 ~2003
1058671093635202655910 ~2003
1058673743211734748710 ~2001
Exponent Prime Factor Digits Year
10586860092540846421711 ~2004
1058702951211740590310 ~2001
10587053392540892813711 ~2004
1058708773635225263910 ~2003
1058739179211747835910 ~2001
1058747939211749587910 ~2001
1058838359211767671910 ~2001
1058839643211767928710 ~2001
1058871791211774358310 ~2001
1058877299211775459910 ~2001
1058899223211779844710 ~2001
1058935583211787116710 ~2001
1059053351211810670310 ~2001
1059053531211810706310 ~2001
1059058811211811762310 ~2001
1059062153635437291910 ~2003
1059097079211819415910 ~2001
1059115919211823183910 ~2001
1059153443211830688710 ~2001
1059228011211845602310 ~2001
1059251189847400951310 ~2003
1059277343211855468710 ~2001
1059301913635581147910 ~2003
1059356159211871231910 ~2001
1059365771211873154310 ~2001
Home
4.724.182 digits
e-mail
25-04-13