Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
908313101726650480910 ~2002
908383319181676663910 ~2001
908390771181678154310 ~2001
908416501545049900710 ~2002
908471999726777599310 ~2002
908474771181694954310 ~2001
908479751181695950310 ~2001
908506871181701374310 ~2001
908534843181706968710 ~2001
908537771181707554310 ~2001
908547131181709426310 ~2001
908641091181728218310 ~2001
908661641545196984710 ~2002
908670071181734014310 ~2001
908671391181734278310 ~2001
908710031181742006310 ~2001
908717279181743455910 ~2001
908731331181746266310 ~2001
908739311181747862310 ~2001
908794979181758995910 ~2001
908811479181762295910 ~2001
908812799181762559910 ~2001
908820851181764170310 ~2001
908838971181767794310 ~2001
908877191181775438310 ~2001
Exponent Prime Factor Digits Year
908918723181783744710 ~2001
9089188878180269983111 ~2005
908935463181787092710 ~2001
908963831181792766310 ~2001
908974211181794842310 ~2001
908979299181795859910 ~2001
909006017727204813710 ~2002
909014363181802872710 ~2001
909049679181809935910 ~2001
909060127909060127110 ~2003
909063539181812707910 ~2001
909063583909063583110 ~2003
909109403181821880710 ~2001
909126203181825240710 ~2001
909131291181826258310 ~2001
909224171181844834310 ~2001
909228779181845755910 ~2001
909234083181846816710 ~2001
909252251181850450310 ~2001
909264203181852840710 ~2001
909278603181855720710 ~2001
909280019181856003910 ~2001
909309083181861816710 ~2001
909390143181878028710 ~2001
909418379181883675910 ~2001
Exponent Prime Factor Digits Year
909431821545659092710 ~2002
9094718332182732399311 ~2004
909492263181898452710 ~2001
909499477545699686310 ~2002
909516539181903307910 ~2001
909535499181907099910 ~2001
909538439181907687910 ~2001
909581303181916260710 ~2001
909590839909590839110 ~2003
909597239181919447910 ~2001
909609403909609403110 ~2003
909667019181933403910 ~2001
909700997545820598310 ~2002
909721517545832910310 ~2002
909725813545835487910 ~2002
909736259181947251910 ~2001
909762851181952570310 ~2001
909775343181955068710 ~2001
909832523181966504710 ~2001
909834599181966919910 ~2001
909841193545904715910 ~2002
909865223181973044710 ~2001
909895631181979126310 ~2001
909911543181982308710 ~2001
909914639181982927910 ~2001
Exponent Prime Factor Digits Year
909924023181984804710 ~2001
910026263182005252710 ~2001
9100396872184095248911 ~2004
910078193546046915910 ~2002
910109069728087255310 ~2002
910187099728149679310 ~2002
910200763910200763110 ~2003
910213127728170501710 ~2002
9102140892184513813711 ~2004
910216799182043359910 ~2001
910239149728191319310 ~2002
910255319182051063910 ~2001
910280219182056043910 ~2001
910314143182062828710 ~2001
910329239182065847910 ~2001
9103344311456535089711 ~2003
910380743182076148710 ~2001
910400279182080055910 ~2001
910405031182081006310 ~2001
910416281546249768710 ~2002
9104480471456716875311 ~2003
910453679182090735910 ~2001
91048051116934937504712 ~2006
910516031182103206310 ~2001
910516441546309864710 ~2002
Home
4.843.404 digits
e-mail
25-06-08