Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
912447479182489495910 ~2001
912449053547469431910 ~2002
9124509611459921537711 ~2003
912464219182492843910 ~2001
9124822972737446891111 ~2004
912487831912487831110 ~2003
912490151182498030310 ~2001
912497161547498296710 ~2002
912541919182508383910 ~2001
912591371182518274310 ~2001
912603347730082677710 ~2002
912608771182521754310 ~2001
912613997730091197710 ~2002
912622103182524420710 ~2001
912658553547595131910 ~2002
912678731182535746310 ~2001
912690673547614403910 ~2002
912698291182539658310 ~2001
912727171912727171110 ~2003
912734051182546810310 ~2001
9127408131277837138311 ~2003
912771059182554211910 ~2001
9128209631460513540911 ~2003
912839183182567836710 ~2001
9128610911643149963911 ~2003
Exponent Prime Factor Digits Year
912863879182572775910 ~2001
912866351182573270310 ~2001
912883859182576771910 ~2001
912885811912885811110 ~2003
912926893547756135910 ~2002
912927563182585512710 ~2001
912937871182587574310 ~2001
912950963182590192710 ~2001
912956939182591387910 ~2001
912985211182597042310 ~2001
913017851182603570310 ~2001
913034411182606882310 ~2001
913054799182610959910 ~2001
913079423182615884710 ~2001
913091827913091827110 ~2003
913176353547905811910 ~2002
9132213191643798374311 ~2003
913253879182650775910 ~2001
913263371182652674310 ~2001
913275491182655098310 ~2001
913296103913296103110 ~2003
913348889730679111310 ~2002
913368941730695152910 ~2002
913379639182675927910 ~2001
913403723182680744710 ~2001
Exponent Prime Factor Digits Year
913418183182683636710 ~2001
913440487913440487110 ~2003
913450943182690188710 ~2001
913474621548084772710 ~2002
913475999182695199910 ~2001
913488341548093004710 ~2002
913533617730826893710 ~2002
913540403182708080710 ~2001
9135486733654194692111 ~2004
913562543182712508710 ~2001
913570061548142036710 ~2002
913587869730870295310 ~2002
913611053548166631910 ~2002
913684721548210832710 ~2002
913709957548225974310 ~2002
913754111182750822310 ~2001
913854743182770948710 ~2001
913899131182779826310 ~2001
913899851182779970310 ~2001
913951901548371140710 ~2002
913979567731183653710 ~2002
913995011182799002310 ~2001
9140001371462400219311 ~2003
914016821548410092710 ~2002
914018219182803643910 ~2001
Exponent Prime Factor Digits Year
914023991182804798310 ~2001
914025389731220311310 ~2002
914031743182806348710 ~2001
914037479182807495910 ~2001
914039183182807836710 ~2001
914055691914055691110 ~2003
914083811182816762310 ~2001
914139263182827852710 ~2001
91414444313163679979312 ~2006
914191913548515147910 ~2002
914258459182851691910 ~2001
914264951182852990310 ~2001
914266319182853263910 ~2001
914310563182862112710 ~2001
914326139182865227910 ~2001
914336903182867380710 ~2001
914365259731492207310 ~2002
914437003914437003110 ~2003
914460479182892095910 ~2001
914461871182892374310 ~2001
914468531182893706310 ~2001
914469299182893859910 ~2001
914501579182900315910 ~2001
914528291182905658310 ~2001
9145302132011966468711 ~2004
Home
4.843.404 digits
e-mail
25-06-08