Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
12019701731923152276911 ~2004
12020116511923218641711 ~2004
1202013053721207831910 ~2003
12020191491682826808711 ~2004
1202028011240405602310 ~2002
1202050691240410138310 ~2002
1202063279240412655910 ~2002
12021181391202118139111 ~2004
12021486972885156872911 ~2005
1202162861961730288910 ~2003
1202197343240439468710 ~2002
1202270843240454168710 ~2002
1202313683240462736710 ~2002
1202328191240465638310 ~2002
1202328713721397227910 ~2003
1202336783240467356710 ~2002
12023470212645163446311 ~2004
1202384003240476800710 ~2002
1202402423240480484710 ~2002
120248554129581144308712 ~2007
1202549591240509918310 ~2002
1202567039240513407910 ~2002
1202572331240514466310 ~2002
1202595371240519074310 ~2002
1202608811240521762310 ~2002
Exponent Prime Factor Digits Year
1202631719962105375310 ~2003
1202677499240535499910 ~2002
1202685251240537050310 ~2002
1202685437721611262310 ~2003
1202750819240550163910 ~2002
1202758283240551656710 ~2002
1202819903240563980710 ~2002
1202934563240586912710 ~2002
1202936519240587303910 ~2002
1203006923240601384710 ~2002
1203013043240602608710 ~2002
1203062699240612539910 ~2002
1203068591240613718310 ~2002
1203102683240620536710 ~2002
1203126131240625226310 ~2002
1203130751240626150310 ~2002
1203155003240631000710 ~2002
12031964331684475006311 ~2004
1203236483240647296710 ~2002
12032857491684600048711 ~2004
1203292397721975438310 ~2003
1203294577721976746310 ~2003
1203297059240659411910 ~2002
1203305711240661142310 ~2002
1203343703240668740710 ~2002
Exponent Prime Factor Digits Year
1203391919240678383910 ~2002
1203392831240678566310 ~2002
1203412631962730104910 ~2003
1203460103240692020710 ~2002
1203506819240701363910 ~2002
1203521219240704243910 ~2002
1203564683240712936710 ~2002
1203569597722141758310 ~2003
1203631763240726352710 ~2002
1203638207962910565710 ~2003
1203655031240731006310 ~2002
1203655727962924581710 ~2003
1203682211240736442310 ~2002
12037422291685239120711 ~2004
1203764183240752836710 ~2002
1203800051240760010310 ~2002
1203828971240765794310 ~2002
1203859259240771851910 ~2002
1203896783240779356710 ~2002
1203945851963156680910 ~2003
1203952091240790418310 ~2002
1204012493722407495910 ~2003
12040216571926434651311 ~2004
12040366511926458641711 ~2004
1204082543240816508710 ~2002
Exponent Prime Factor Digits Year
1204139099240827819910 ~2002
12041798632890031671311 ~2005
1204189319240837863910 ~2002
1204206539240841307910 ~2002
1204228703240845740710 ~2002
1204246679240849335910 ~2002
1204270307963416245710 ~2003
1204318079240863615910 ~2002
12043516371686092291911 ~2004
120437953143598539022312 ~2007
1204395443240879088710 ~2002
1204397543240879508710 ~2002
1204404011240880802310 ~2002
1204412711240882542310 ~2002
1204417811240883562310 ~2002
1204420163240884032710 ~2002
1204491059963592847310 ~2003
1204555337722733202310 ~2003
1204561499240912299910 ~2002
1204572947963658357710 ~2003
12045741131927318580911 ~2004
12047174992891321997711 ~2005
12047392093614217627111 ~2005
1204746479240949295910 ~2002
1204756277722853766310 ~2003
Home
4.724.182 digits
e-mail
25-04-13