Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
9638044331542087092911 ~2003
963818951192763790310 ~2001
963897293578338375910 ~2002
963921251192784250310 ~2001
963930221578358132710 ~2002
963954899192790979910 ~2001
9640014191735202554311 ~2004
9640508831542481412911 ~2003
964051559192810311910 ~2001
964056683192811336710 ~2001
964068541578441124710 ~2002
964076819192815363910 ~2001
9641029494627694155311 ~2005
964130543192826108710 ~2001
9641458912506779316711 ~2004
964172519192834503910 ~2001
964175291192835058310 ~2001
964179179192835835910 ~2001
964182899192836579910 ~2001
964193903192838780710 ~2001
964218803192843760710 ~2001
964229639192845927910 ~2001
964231571192846314310 ~2001
964256801578554080710 ~2002
964286243192857248710 ~2001
Exponent Prime Factor Digits Year
964401803192880360710 ~2001
964433801578660280710 ~2002
964439041578663424710 ~2002
964440359192888071910 ~2001
964501037578700622310 ~2002
964542599192908519910 ~2001
964559003192911800710 ~2001
9645639671736215140711 ~2004
9645732291350402520711 ~2003
964605923192921184710 ~2001
964637279192927455910 ~2001
964640063192928012710 ~2001
964670279192934055910 ~2001
964675253578805151910 ~2002
964680551192936110310 ~2001
964683971192936794310 ~2001
964692959192938591910 ~2001
964702379192940475910 ~2001
964707911192941582310 ~2001
964708091192941618310 ~2001
964800899192960179910 ~2001
964862543192972508710 ~2001
964872203192974440710 ~2001
964916759192983351910 ~2001
964944443192988888710 ~2001
Exponent Prime Factor Digits Year
964997861771998288910 ~2003
965007383193001476710 ~2001
965050643193010128710 ~2001
965095841579057504710 ~2002
965151983193030396710 ~2001
965175859965175859110 ~2003
965200139772160111310 ~2003
965260451193052090310 ~2001
965275919193055183910 ~2001
965309363193061872710 ~2001
965318219193063643910 ~2001
965334143193066828710 ~2001
965346971193069394310 ~2001
965372279193074455910 ~2001
965383691193076738310 ~2001
965396039193079207910 ~2001
965410661579246396710 ~2002
965439221579263532710 ~2002
965455511193091102310 ~2001
9654715132317131631311 ~2004
965494619193098923910 ~2001
965508143193101628710 ~2001
965520299193104059910 ~2001
965526911193105382310 ~2001
965548141579328884710 ~2002
Exponent Prime Factor Digits Year
965578583193115716710 ~2001
965578871193115774310 ~2001
965650943193130188710 ~2001
965670551193134110310 ~2001
965673743193134748710 ~2001
965675759193135151910 ~2001
965681663193136332710 ~2001
965710937579426562310 ~2002
965722739193144547910 ~2001
965730179193146035910 ~2001
965800163193160032710 ~2001
965847977772678381710 ~2003
965854871193170974310 ~2001
9658554771352197667911 ~2003
965864891193172978310 ~2001
965873399193174679910 ~2001
965896643193179328710 ~2001
965899631193179926310 ~2001
965958083193191616710 ~2001
966015377772812301710 ~2003
966021517579612910310 ~2002
966026531193205306310 ~2001
966072539193214507910 ~2001
966101107966101107110 ~2003
9661168876376371454311 ~2005
Home
4.873.271 digits
e-mail
25-06-22