Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1099338887879471109710 ~2003
1099382939219876587910 ~2002
1099385159219877031910 ~2002
1099410479219882095910 ~2002
10994112071099411207111 ~2003
1099428839219885767910 ~2002
1099442213659665327910 ~2003
1099513799219902759910 ~2002
1099532729879626183310 ~2003
1099545563219909112710 ~2002
1099587299219917459910 ~2002
1099593629879674903310 ~2003
1099654499219930899910 ~2002
1099656253659793751910 ~2003
1099703219219940643910 ~2002
1099731551219946310310 ~2002
1099755599219951119910 ~2002
1099847579219969515910 ~2002
1099851671219970334310 ~2002
1099880317659928190310 ~2003
1099960973659976583910 ~2003
1099989503219997900710 ~2002
1100060771220012154310 ~2002
1100069843220013968710 ~2002
1100094251220018850310 ~2002
Exponent Prime Factor Digits Year
1100099219220019843910 ~2002
1100174819220034963910 ~2002
1100346491220069298310 ~2002
11003545571760567291311 ~2004
1100361323220072264710 ~2002
1100413837660248302310 ~2003
1100463179220092635910 ~2002
1100521601660312960710 ~2003
1100566679220113335910 ~2002
1100593573660356143910 ~2003
1100608501660365100710 ~2003
1100635093660381055910 ~2003
1100650871220130174310 ~2002
1100652023220130404710 ~2002
1100696351220139270310 ~2002
1100701799220140359910 ~2002
1100708183220141636710 ~2002
1100805143220161028710 ~2002
11008503431100850343111 ~2003
1100953957660572374310 ~2003
11009680815284646788911 ~2005
1100971499220194299910 ~2002
1100974151220194830310 ~2002
1101008063220201612710 ~2002
1101014459220202891910 ~2002
Exponent Prime Factor Digits Year
1101026483220205296710 ~2002
1101054299220210859910 ~2002
1101072443220214488710 ~2002
1101096131220219226310 ~2002
1101099479880879583310 ~2003
1101135023220227004710 ~2002
1101154913660692947910 ~2003
1101159131220231826310 ~2002
1101214451220242890310 ~2002
11012404631101240463111 ~2003
1101258461660755076710 ~2003
1101261779220252355910 ~2002
1101268631220253726310 ~2002
1101319873660791923910 ~2003
11013318433744528266311 ~2005
1101342241660805344710 ~2003
1101349391220269878310 ~2002
1101350231220270046310 ~2002
1101383291220276658310 ~2002
1101385679220277135910 ~2002
1101392291220278458310 ~2002
1101490139220298027910 ~2002
11015063831101506383111 ~2003
1101576023220315204710 ~2002
1101579959220315991910 ~2002
Exponent Prime Factor Digits Year
11015829911101582991111 ~2003
1101622163220324432710 ~2002
1101641003220328200710 ~2002
1101672179220334435910 ~2002
1101706631220341326310 ~2002
1101719713661031827910 ~2003
1101786577661071946310 ~2003
1101793019220358603910 ~2002
1101853271220370654310 ~2002
1101865571220373114310 ~2002
1101905963220381192710 ~2002
1101907991220381598310 ~2002
1101928889881543111310 ~2003
1101948311220389662310 ~2002
1101960551220392110310 ~2002
1101984371220396874310 ~2002
1102034963220406992710 ~2002
1102091519220418303910 ~2002
11020967831102096783111 ~2003
11021005511102100551111 ~2003
1102150559220430111910 ~2002
1102189811220437962310 ~2002
1102220783220444156710 ~2002
1102248359220449671910 ~2002
1102261271220452254310 ~2002
Home
4.724.182 digits
e-mail
25-04-13