Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
925090619185018123910 ~2001
925102463185020492710 ~2001
9251248211480199713711 ~2003
925129607740103685710 ~2002
925139197555083518310 ~2002
9251432171480229147311 ~2003
925155131185031026310 ~2001
925158599185031719910 ~2001
925214039185042807910 ~2001
9252965771480474523311 ~2003
925313951185062790310 ~2001
925336991185067398310 ~2001
925338899185067779910 ~2001
925342811185068562310 ~2001
925374623185074924710 ~2001
925409939185081987910 ~2001
925425383185085076710 ~2001
9254568671480730987311 ~2003
925466579185093315910 ~2001
925514879185102975910 ~2001
925536119185107223910 ~2001
925540439185108087910 ~2001
925572299185114459910 ~2001
9255873592221409661711 ~2004
925649111185129822310 ~2001
Exponent Prime Factor Digits Year
925667159185133431910 ~2001
9256783791666221082311 ~2003
925685951185137190310 ~2001
925704431185140886310 ~2001
925704959185140991910 ~2001
925734391925734391110 ~2003
925777091185155418310 ~2001
925787783185157556710 ~2001
925833479185166695910 ~2001
925871711185174342310 ~2001
925872611185174522310 ~2001
925886653555531991910 ~2002
925897463185179492710 ~2001
9259018032222164327311 ~2004
925926359185185271910 ~2001
925928231185185646310 ~2001
925940783185188156710 ~2001
925944179185188835910 ~2001
925968539185193707910 ~2001
925980617740784493710 ~2002
9259947911481591665711 ~2003
9260119793889250311911 ~2004
926052443185210488710 ~2001
926055131185211026310 ~2001
926070191185214038310 ~2001
Exponent Prime Factor Digits Year
926093939185218787910 ~2001
926098337555659002310 ~2002
926111999185222399910 ~2001
9261143691296560116711 ~2003
926124553555674731910 ~2002
926152553555691531910 ~2002
926186279185237255910 ~2001
926236583185247316710 ~2001
926267483185253496710 ~2001
926274953555764971910 ~2002
9262759375187145247311 ~2005
926282977555769786310 ~2002
926308391185261678310 ~2001
926311751185262350310 ~2001
926330903185266180710 ~2001
926337623185267524710 ~2001
926346601555807960710 ~2002
926349097555809458310 ~2002
926388623185277724710 ~2001
926474963185294992710 ~2001
926497811185299562310 ~2001
926512991185302598310 ~2001
926529763926529763110 ~2003
926531279185306255910 ~2001
926555939185311187910 ~2001
Exponent Prime Factor Digits Year
926570999185314199910 ~2001
926586959185317391910 ~2001
926592923185318584710 ~2001
926594699185318939910 ~2001
9266237293706494916111 ~2004
926640791185328158310 ~2001
926643551185328710310 ~2001
926677933556006759910 ~2002
926681621556008972710 ~2002
926696863926696863110 ~2003
926712863185342572710 ~2001
926765459185353091910 ~2001
9267804171297492583911 ~2003
926784731185356946310 ~2001
926797331185359466310 ~2001
926809171926809171110 ~2003
926815271185363054310 ~2001
926822153556093291910 ~2002
926826011185365202310 ~2001
926853299185370659910 ~2001
926924437556154662310 ~2002
926929859185385971910 ~2001
926951771185390354310 ~2001
926952623185390524710 ~2001
9269722317415777848111 ~2005
Home
4.843.404 digits
e-mail
25-06-08