Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
926973779185394755910 ~2001
927030899185406179910 ~2001
927039923185407984710 ~2001
9270552911483288465711 ~2003
9270650571297891079911 ~2003
927078631927078631110 ~2003
927123803185424760710 ~2001
927168919927168919110 ~2003
927274583185454916710 ~2001
927274823185454964710 ~2001
927294241556376544710 ~2002
927365339185473067910 ~2001
927369563185473912710 ~2001
927401171185480234310 ~2001
927409621556445772710 ~2002
927427693556456615910 ~2002
927435623185487124710 ~2001
927462937556477762310 ~2002
927472177556483306310 ~2002
927513371185502674310 ~2001
927557303185511460710 ~2001
927568693556541215910 ~2002
927578819185515763910 ~2001
927602639185520527910 ~2001
92761354123004815816912 ~2006
Exponent Prime Factor Digits Year
927651779185530355910 ~2001
927656557556593934310 ~2002
927668363185533672710 ~2001
927724379185544875910 ~2001
927773417556664050310 ~2002
927775631185555126310 ~2001
927798779185559755910 ~2001
927810203185562040710 ~2001
927864011185572802310 ~2001
927865811185573162310 ~2001
927870397556722238310 ~2002
927925871185585174310 ~2001
927941099185588219910 ~2001
927962279185592455910 ~2001
927971483185594296710 ~2001
9280180871670432556711 ~2003
928055963185611192710 ~2001
9280561271484889803311 ~2003
928058471185611694310 ~2001
928075021556845012710 ~2002
928100051185620010310 ~2001
928147823185629564710 ~2001
928178831185635766310 ~2001
928253279185650655910 ~2001
928283341556970004710 ~2002
Exponent Prime Factor Digits Year
928305359185661071910 ~2001
928345091185669018310 ~2001
9283665472228079712911 ~2004
928373021557023812710 ~2002
928385483185677096710 ~2001
928487467928487467110 ~2003
9284916311671284935911 ~2003
9285013511671302431911 ~2003
928507991185701598310 ~2001
928510511742808408910 ~2003
928541639185708327910 ~2001
928571159185714231910 ~2001
928598353557159011910 ~2002
928688543185737708710 ~2001
928702031185740406310 ~2001
928708031185741606310 ~2001
928744031185748806310 ~2001
928748459185749691910 ~2001
928758431185751686310 ~2001
9288184871486109579311 ~2003
928850771185770154310 ~2001
928854431185770886310 ~2001
928866551743093240910 ~2003
928935857557361514310 ~2002
928963151185792630310 ~2001
Exponent Prime Factor Digits Year
928977551185795510310 ~2001
928983491743186792910 ~2003
929002619185800523910 ~2001
929021417557412850310 ~2002
929032343185806468710 ~2001
929037251185807450310 ~2001
929040053557424031910 ~2002
929044153557426491910 ~2002
929059091185811818310 ~2001
929093183185818636710 ~2001
929102459185820491910 ~2001
9291339132229921391311 ~2004
929178119185835623910 ~2001
929202551185840510310 ~2001
929234963185846992710 ~2001
929250323185850064710 ~2001
929255399185851079910 ~2001
929310251185862050310 ~2001
929323919185864783910 ~2001
929324309743459447310 ~2003
929332979185866595910 ~2001
929351431929351431110 ~2003
929355071185871014310 ~2001
9293833211487013313711 ~2003
929409251185881850310 ~2001
Home
4.843.404 digits
e-mail
25-06-08