Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
9315493212049408506311 ~2004
931552403186310480710 ~2001
931566737558940042310 ~2002
9315880393167399332711 ~2004
931596443186319288710 ~2001
931668191186333638310 ~2001
9316836719130499975911 ~2005
931691231186338246310 ~2001
931712759186342551910 ~2001
931719611186343922310 ~2001
931770011186354002310 ~2001
931857181559114308710 ~2002
931876307745501045710 ~2003
931891799186378359910 ~2001
931910341559146204710 ~2002
931914803186382960710 ~2001
9319230531304692274311 ~2003
931927033559156219910 ~2002
931957319186391463910 ~2001
931962959186392591910 ~2001
931965329745572263310 ~2003
931979843186395968710 ~2001
931989479745591583310 ~2003
932032741559219644710 ~2002
932070803186414160710 ~2001
Exponent Prime Factor Digits Year
932196803186439360710 ~2001
932197691186439538310 ~2001
932238563186447712710 ~2001
932266691186453338310 ~2001
932277119186455423910 ~2001
932284823186456964710 ~2001
9323004012796901203111 ~2004
932311823186462364710 ~2001
932378087745902469710 ~2003
932386933559432159910 ~2002
932410937745928749710 ~2003
932419259186483851910 ~2001
932440319186488063910 ~2001
932469959186493991910 ~2001
932475121559485072710 ~2002
932479109745983287310 ~2003
932496263186499252710 ~2001
932535581559521348710 ~2002
932535817559521490310 ~2002
932536763186507352710 ~2001
932565779746052623310 ~2003
932566091186513218310 ~2001
932575331186515066310 ~2001
9325774693730309876111 ~2004
932594951186518990310 ~2001
Exponent Prime Factor Digits Year
932710391186542078310 ~2001
932725823186545164710 ~2001
932737361559642416710 ~2002
9327475932052044704711 ~2004
932771291746217032910 ~2003
932798159186559631910 ~2001
932799743186559948710 ~2001
932888903186577780710 ~2001
932952071186590414310 ~2001
932972879186594575910 ~2001
933006551186601310310 ~2001
9330213771306229927911 ~2003
933041891186608378310 ~2001
933047051186609410310 ~2001
933070139186614027910 ~2001
933082691186616538310 ~2001
933096851746477480910 ~2003
933101699186620339910 ~2001
933125267746500213710 ~2003
9331759735785691032711 ~2005
933193643186638728710 ~2001
933199391186639878310 ~2001
933268103186653620710 ~2001
933273059186654611910 ~2001
933277799186655559910 ~2001
Exponent Prime Factor Digits Year
93330094738078678637712 ~2007
933318143186663628710 ~2001
933349073560009443910 ~2002
933406421560043852710 ~2002
933415019186683003910 ~2001
933452543186690508710 ~2001
933460523186692104710 ~2001
933489911186697982310 ~2001
933514511186702902310 ~2001
933524831186704966310 ~2001
933530159186706031910 ~2001
933580463186716092710 ~2001
933589511746871608910 ~2003
933610511186722102310 ~2001
933629051186725810310 ~2001
933650579186730115910 ~2001
933652219933652219110 ~2003
933674123186734824710 ~2001
933689063186737812710 ~2001
933807131186761426310 ~2001
933810623186762124710 ~2001
933825731186765146310 ~2001
9338295171307361323911 ~2003
933834791747067832910 ~2003
933864403933864403110 ~2003
Home
4.843.404 digits
e-mail
25-06-08