Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
929412551185882510310 ~2001
929428933557657359910 ~2002
929441651185888330310 ~2001
929449901557669940710 ~2002
929452703185890540710 ~2001
929473463185894692710 ~2001
9295136992974443836911 ~2004
929522939185904587910 ~2001
929533991185906798310 ~2001
929550203185910040710 ~2001
929563223185912644710 ~2001
929563763185912752710 ~2001
929579723185915944710 ~2001
929602561557761536710 ~2002
929663303185932660710 ~2001
929669963185933992710 ~2001
929691611185938322310 ~2001
929709023185941804710 ~2001
929710319185942063910 ~2001
929727803185945560710 ~2001
929755523185951104710 ~2001
929771393557862835910 ~2002
929772421557863452710 ~2002
929772511929772511110 ~2003
929776439185955287910 ~2001
Exponent Prime Factor Digits Year
929779199185955839910 ~2001
929809981557885988710 ~2002
92983931911158071828112 ~2005
929843857557906314310 ~2002
9298764471673777604711 ~2003
929913191185982638310 ~2001
929921159185984231910 ~2001
929943323185988664710 ~2001
929971379185994275910 ~2001
929974091185994818310 ~2001
929986637557991982310 ~2002
930008483186001696710 ~2001
930014339186002867910 ~2001
930017987744014389710 ~2003
930055751186011150310 ~2001
930115223186023044710 ~2001
930189791186037958310 ~2001
930190753558114451910 ~2002
930217199186043439910 ~2001
930245891186049178310 ~2001
930249277558149566310 ~2002
930253501558152100710 ~2002
930283379186056675910 ~2001
930321071744256856910 ~2003
930362099186072419910 ~2001
Exponent Prime Factor Digits Year
930368891186073778310 ~2001
9304046091302566452711 ~2003
930415103186083020710 ~2001
930417721558250632710 ~2002
930420539186084107910 ~2001
930424199186084839910 ~2001
930458891186091778310 ~2001
930502343186100468710 ~2001
930505883186101176710 ~2001
9305073971488811835311 ~2003
930544331744435464910 ~2003
930611651186122330310 ~2001
930639253558383551910 ~2002
9306547335025535558311 ~2005
9306736311675212535911 ~2003
930695099186139019910 ~2001
930742643186148528710 ~2001
930752783186150556710 ~2001
930754211186150842310 ~2001
930769943186153988710 ~2001
930773891186154778310 ~2001
930793271186158654310 ~2001
9307994833164718242311 ~2004
9308131012978601923311 ~2004
930818783186163756710 ~2001
Exponent Prime Factor Digits Year
930844559186168911910 ~2001
930847139186169427910 ~2001
930855911186171182310 ~2001
9308604172234065000911 ~2004
930909641558545784710 ~2002
930990719186198143910 ~2001
931014107744811285710 ~2003
931047011186209402310 ~2001
931062227744849781710 ~2003
9310778411489724545711 ~2003
9311627411489860385711 ~2003
931165331186233066310 ~2001
931172579186234515910 ~2001
9311887732234853055311 ~2004
9312002092979840668911 ~2004
9312602232235024535311 ~2004
931312703186262540710 ~2001
931322659931322659110 ~2003
931334303186266860710 ~2001
931355759186271151910 ~2001
93139558744706988176112 ~2007
931421651186284330310 ~2001
9314227871490276459311 ~2003
93150299311178035916112 ~2005
931515911186303182310 ~2001
Home
4.843.404 digits
e-mail
25-06-08