Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1118245679223649135910 ~2002
1118268743223653748710 ~2002
1118332991223666598310 ~2002
1118334599223666919910 ~2002
1118336339223667267910 ~2002
1118359499223671899910 ~2002
11183818432907792791911 ~2004
111839466113197056999912 ~2006
1118431823223686364710 ~2002
1118440679223688135910 ~2002
1118473067894778453710 ~2003
1118494031223698806310 ~2002
1118499743223699948710 ~2002
1118567423223713484710 ~2002
11186648098949318472111 ~2006
1118683451223736690310 ~2002
1118720651223744130310 ~2002
1118731199223746239910 ~2002
1118740321671244192710 ~2003
1118768999223753799910 ~2002
11187894791118789479111 ~2003
1118823323223764664710 ~2002
1118868433671321059910 ~2003
1118944679223788935910 ~2002
1118984411223796882310 ~2002
Exponent Prime Factor Digits Year
1118987783223797556710 ~2002
1119026939223805387910 ~2002
1119032231223806446310 ~2002
1119042863223808572710 ~2002
1119073859223814771910 ~2002
1119124859223824971910 ~2002
1119126083223825216710 ~2002
1119127679223825535910 ~2002
1119141311223828262310 ~2002
1119169477671501686310 ~2003
1119244961895395968910 ~2003
1119293303223858660710 ~2002
1119307919223861583910 ~2002
11193096017835167207111 ~2005
1119324623223864924710 ~2002
1119358403223871680710 ~2002
1119372731223874546310 ~2002
1119379763223875952710 ~2002
1119438821671663292710 ~2003
1119452891223890578310 ~2002
1119503653671702191910 ~2003
1119506789895605431310 ~2003
1119608537671765122310 ~2003
1119662759223932551910 ~2002
1119682463223936492710 ~2002
Exponent Prime Factor Digits Year
1119703451223940690310 ~2002
1119706811223941362310 ~2002
1119752351223950470310 ~2002
1119774563223954912710 ~2002
1119795359223959071910 ~2002
1119825719223965143910 ~2002
1119895571223979114310 ~2002
11198965815375503588911 ~2005
1119902963223980592710 ~2002
1119905401671943240710 ~2003
1119912203223982440710 ~2002
1119958319223991663910 ~2002
1119979271223995854310 ~2002
1120016939224003387910 ~2002
1120073411224014682310 ~2002
1120081799224016359910 ~2002
1120150673672090403910 ~2003
1120250291224050058310 ~2002
1120251421672150852710 ~2003
1120266361672159816710 ~2003
11202922072912759738311 ~2004
1120301111224060222310 ~2002
1120306079224061215910 ~2002
1120312211224062442310 ~2002
1120347479224069495910 ~2002
Exponent Prime Factor Digits Year
1120363691224072738310 ~2002
1120383851224076770310 ~2002
1120431839896345471310 ~2003
1120454987896363989710 ~2003
1120482851224096570310 ~2002
1120531697896425357710 ~2003
1120567439224113487910 ~2002
1120567691224113538310 ~2002
1120611731224122346310 ~2002
11206235231120623523111 ~2003
1120628903224125780710 ~2002
1120635179224127035910 ~2002
1120673483224134696710 ~2002
1120690223224138044710 ~2002
1120728671224145734310 ~2002
1120736819224147363910 ~2002
11208048291569126760711 ~2004
1120833431224166686310 ~2002
1120837499224167499910 ~2002
1120848791224169758310 ~2002
1120904581672542748710 ~2003
1120921211224184242310 ~2002
1120926791896741432910 ~2003
1121032093672619255910 ~2003
1121088623224217724710 ~2002
Home
4.724.182 digits
e-mail
25-04-13