Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1253290271250658054310 ~2002
1253306039250661207910 ~2002
1253343599250668719910 ~2002
1253353019250670603910 ~2002
1253418539250683707910 ~2002
1253422813752053687910 ~2003
1253470331250694066310 ~2002
1253480981752088588710 ~2003
1253515943250703188710 ~2002
12535281193008467485711 ~2005
1253545457752127274310 ~2003
1253548343250709668710 ~2002
1253566283250713256710 ~2002
12536622171755127103911 ~2004
1253735891250747178310 ~2002
1253737223250747444710 ~2002
1253740343250748068710 ~2002
12537512231253751223111 ~2004
1253771303250754260710 ~2002
1253826383250765276710 ~2002
1253880893752328535910 ~2003
12539051991003124159311 ~2004
1253933951250786790310 ~2002
12539616073009507856911 ~2005
1253981231250796246310 ~2002
Exponent Prime Factor Digits Year
1254003203250800640710 ~2002
1254009959250801991910 ~2002
1254018119250803623910 ~2002
1254081011250816202310 ~2002
1254098291250819658310 ~2002
1254122279250824455910 ~2002
1254159611250831922310 ~2002
1254216371250843274310 ~2002
1254369839250873967910 ~2002
12543810171003504813711 ~2004
12543903431254390343111 ~2004
1254483053752689831910 ~2003
12545130171003610413711 ~2004
1254515291250903058310 ~2002
1254523691250904738310 ~2002
12545388071254538807111 ~2004
1254567371250913474310 ~2002
1254631837752779102310 ~2003
1254638939250927787910 ~2002
1254665003250933000710 ~2002
1254699923250939984710 ~2002
1254700883250940176710 ~2002
1254725711250945142310 ~2002
1254728291250945658310 ~2002
1254732779250946555910 ~2002
Exponent Prime Factor Digits Year
1254752963250950592710 ~2002
1254768479250953695910 ~2002
1254810659250962131910 ~2002
12548134916274067455111 ~2005
1254833543250966708710 ~2002
1254899843250979968710 ~2002
12549013393011763213711 ~2005
12549185511003934840911 ~2004
12550719012008115041711 ~2004
12551604472259288804711 ~2004
1255171751251034350310 ~2002
1255173371251034674310 ~2002
12551860212761409246311 ~2005
12552161412008345825711 ~2004
12552748932008439828911 ~2004
12552904971757406695911 ~2004
1255342019251068403910 ~2002
1255365011251073002310 ~2002
12554150331757581046311 ~2004
1255419719251083943910 ~2002
1255436437753261862310 ~2003
12554569071004365525711 ~2004
1255539011251107802310 ~2002
1255554731251110946310 ~2002
1255567979251113595910 ~2002
Exponent Prime Factor Digits Year
1255595051251119010310 ~2002
1255598339251119667910 ~2002
12556588511255658851111 ~2004
1255704839251140967910 ~2002
1255720943251144188710 ~2002
12557721171004617693711 ~2004
1255824683251164936710 ~2002
1255839863251167972710 ~2002
1255918463251183692710 ~2002
1255945283251189056710 ~2002
1256051903251210380710 ~2002
12560958732009753396911 ~2004
1256160371251232074310 ~2002
1256201339251240267910 ~2002
1256208419251241683910 ~2002
1256248633753749179910 ~2003
12562888332010062132911 ~2004
12562980897789048151911 ~2006
1256299673753779803910 ~2003
12563305671005064453711 ~2004
1256430419251286083910 ~2002
12564305511005144440911 ~2004
1256479151251295830310 ~2002
1256481623251296324710 ~2002
1256497139251299427910 ~2002
Home
4.724.182 digits
e-mail
25-04-13