Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1249788803249957760710 ~2002
1249791863249958372710 ~2002
1249811399249962279910 ~2002
1249825691249965138310 ~2002
1249834931249966986310 ~2002
1249839179249967835910 ~2002
1249873343249974668710 ~2002
1249877903249975580710 ~2002
1249949999249989999910 ~2002
1249967363249993472710 ~2002
1249977611249995522310 ~2002
12500222511000017800911 ~2004
1250029871250005974310 ~2002
12500385071250038507111 ~2004
1250065259250013051910 ~2002
1250085503250017100710 ~2002
1250099531250019906310 ~2002
1250199803250039960710 ~2002
12502111871250211187111 ~2004
1250215451250043090310 ~2002
12502222573750666771111 ~2005
12502923432000467748911 ~2004
12503565591000285247311 ~2004
1250370851250074170310 ~2002
1250375459250075091910 ~2002
Exponent Prime Factor Digits Year
1250384279250076855910 ~2002
1250424863250084972710 ~2002
1250524991250104998310 ~2002
1250584823250116964710 ~2002
1250599859250119971910 ~2002
1250685701750411420710 ~2003
12506864391000549151311 ~2004
1250705831250141166310 ~2002
1250724071250144814310 ~2002
1250765651250153130310 ~2002
1250766481750459888710 ~2003
1250786921750472152710 ~2003
1250833271250166654310 ~2002
1250885591250177118310 ~2002
12509057511000724600911 ~2004
1250930273750558163910 ~2003
1250933543250186708710 ~2002
1250934719250186943910 ~2002
1250938103250187620710 ~2002
1250974721750584832710 ~2003
1250983319250196663910 ~2002
12509966235254185816711 ~2005
1251026537750615922310 ~2003
12510290811000823264911 ~2004
1251044243250208848710 ~2002
Exponent Prime Factor Digits Year
1251057383250211476710 ~2002
1251190883250238176710 ~2002
1251307391250261478310 ~2002
1251509999250301999910 ~2002
12515165873003639808911 ~2005
1251599003250319800710 ~2002
1251641351250328270310 ~2002
12516495733003958975311 ~2005
12516761592253017086311 ~2004
1251725543250345108710 ~2002
12517334233004160215311 ~2005
1251735539250347107910 ~2002
1251782243250356448710 ~2002
1251862441751117464710 ~2003
1251920063250384012710 ~2002
1251964859250392971910 ~2002
1251979931250395986310 ~2002
1252000703250400140710 ~2002
1252046123250409224710 ~2002
1252060739250412147910 ~2002
12521427771001714221711 ~2004
1252194173751316503910 ~2003
1252194719250438943910 ~2002
1252211819250442363910 ~2002
1252250231250450046310 ~2002
Exponent Prime Factor Digits Year
1252280663250456132710 ~2002
1252309211250461842310 ~2002
1252346657751407994310 ~2003
1252358339250471667910 ~2002
1252417583250483516710 ~2002
1252425599250485119910 ~2002
1252467143250493428710 ~2002
1252470431250494086310 ~2002
1252480343250496068710 ~2002
1252483019250496603910 ~2002
1252486799250497359910 ~2002
1252551299250510259910 ~2002
1252587971250517594310 ~2002
1252668359250533671910 ~2002
12526895871002151669711 ~2004
12527504232004400676911 ~2004
1252762403250552480710 ~2002
12527794614760561951911 ~2005
12528331491002266519311 ~2004
1252835939250567187910 ~2002
1253006681751804008710 ~2003
1253100851250620170310 ~2002
1253110091250622018310 ~2002
1253122679250624535910 ~2002
1253215343250643068710 ~2002
Home
4.724.182 digits
e-mail
25-04-13