Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1046635453627981271910 ~2003
1046664863209332972710 ~2001
1046739437837391549710 ~2003
1046770883209354176710 ~2001
1046807999209361599910 ~2001
1046819783209363956710 ~2001
10468250272512380064911 ~2004
1046908211209381642310 ~2001
10469291091465700752711 ~2004
1046933291209386658310 ~2001
1047013403209402680710 ~2001
10470327431047032743111 ~2003
1047032891209406578310 ~2001
1047049259209409851910 ~2001
1047070261628242156710 ~2003
10471196511884815371911 ~2004
1047129353628277611910 ~2003
1047137411209427482310 ~2001
1047246803209449360710 ~2001
10472488271885047888711 ~2004
10472489591047248959111 ~2003
1047292193628375315910 ~2003
10472986574189194628111 ~2005
1047349799209469959910 ~2001
1047351083209470216710 ~2001
Exponent Prime Factor Digits Year
1047399623209479924710 ~2001
1047402959209480591910 ~2001
1047442391209488478310 ~2001
1047443741837954992910 ~2003
1047474479209494895910 ~2001
10474961032723489867911 ~2004
1047528563209505712710 ~2001
1047533351209506670310 ~2001
1047534281628520568710 ~2003
1047550043209510008710 ~2001
10475570831676091332911 ~2004
1047579179838063343310 ~2003
10476352271885743408711 ~2004
1047724631209544926310 ~2001
1047731039209546207910 ~2001
1047735659838188527310 ~2003
1047737429838189943310 ~2003
1047757811209551562310 ~2001
1047810899838248719310 ~2003
1047820811209564162310 ~2001
1047822563209564512710 ~2001
1047883019209576603910 ~2001
1047933493628760095910 ~2003
1047946441628767864710 ~2003
1047986111209597222310 ~2001
Exponent Prime Factor Digits Year
10480094834192037932111 ~2005
1048016591209603318310 ~2001
1048076279209615255910 ~2001
1048080377838464301710 ~2003
1048109603209621920710 ~2001
1048133797628880278310 ~2003
1048142423209628484710 ~2001
1048173083209634616710 ~2001
10482155231048215523111 ~2003
1048221959209644391910 ~2001
1048277357838621885710 ~2003
1048293419838634735310 ~2003
1048306043209661208710 ~2001
1048371251209674250310 ~2001
1048396841838717472910 ~2003
1048413011209682602310 ~2001
1048422863209684572710 ~2001
1048506311209701262310 ~2001
1048509719209701943910 ~2001
1048609559209721911910 ~2001
10486810315872613773711 ~2005
1048697879209739575910 ~2001
1048721111209744222310 ~2001
1048754279209750855910 ~2001
10487617998599846751911 ~2005
Exponent Prime Factor Digits Year
1048827443209765488710 ~2001
10488282375034375537711 ~2005
1048832717839066173710 ~2003
10488520814824719572711 ~2005
1048855079209771015910 ~2001
1048862281629317368710 ~2003
1048910593629346355910 ~2003
1048921001839136800910 ~2003
1048932719209786543910 ~2001
10490406794405970851911 ~2005
1049044499209808899910 ~2001
1049120783209824156710 ~2001
1049136989839309591310 ~2003
1049227079209845415910 ~2001
1049302763209860552710 ~2001
1049312399209862479910 ~2001
1049325071209865014310 ~2001
1049340191209868038310 ~2001
1049346659209869331910 ~2001
10494195074197678028111 ~2005
1049430881629658528710 ~2003
1049438651209887730310 ~2001
1049466617629679970310 ~2003
1049550839209910167910 ~2001
10495539191049553919111 ~2003
Home
4.843.404 digits
e-mail
25-06-08