Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
12596084511007686760911 ~2004
1259638091251927618310 ~2002
1259655263251931052710 ~2002
12596700171763538023911 ~2004
1259743777755846266310 ~2003
1259855141755913084710 ~2003
1259973779251994755910 ~2002
1260024599252004919910 ~2002
1260053699252010739910 ~2002
12600734711260073471111 ~2004
1260102479252020495910 ~2002
1260114431252022886310 ~2002
1260191879252038375910 ~2002
1260210443252042088710 ~2002
1260222959252044591910 ~2002
1260240743252048148710 ~2002
1260246731252049346310 ~2002
1260294011252058802310 ~2002
1260297323252059464710 ~2002
12603113292772684923911 ~2005
1260366623252073324710 ~2002
12605681571008454525711 ~2004
12606508191008520655311 ~2004
1260679163252135832710 ~2002
1260684059252136811910 ~2002
Exponent Prime Factor Digits Year
1260692483252138496710 ~2002
1260704183252140836710 ~2002
1260731051252146210310 ~2002
1260816077756489646310 ~2003
1260836039252167207910 ~2002
1260856199252171239910 ~2002
1260914051252182810310 ~2002
1260951683252190336710 ~2002
1261134863252226972710 ~2002
1261176023252235204710 ~2002
126121208945403635204112 ~2008
1261217201756730320710 ~2003
1261266473756759883910 ~2003
12612740991009019279311 ~2004
1261277939252255587910 ~2002
1261284721756770832710 ~2003
1261346363252269272710 ~2002
1261395491252279098310 ~2002
1261396217756837730310 ~2003
1261414751252282950310 ~2002
1261534619252306923910 ~2002
1261561883252312376710 ~2002
1261585859252317171910 ~2002
1261589963252317992710 ~2002
1261639943252327988710 ~2002
Exponent Prime Factor Digits Year
1261656911252331382310 ~2002
1261672283252334456710 ~2002
1261705631252341126310 ~2002
1261717001757030200710 ~2003
1261740251252348050310 ~2002
1261760039252352007910 ~2002
1261817339252363467910 ~2002
1261840799252368159910 ~2002
1261868963252373792710 ~2002
1261893371252378674310 ~2002
1261898531252379706310 ~2002
12618994131766659178311 ~2004
1261908299252381659910 ~2002
12619346691766708536711 ~2004
1262001959252400391910 ~2002
1262002073757201243910 ~2003
1262012351252402470310 ~2002
12620640311262064031111 ~2004
12620719271262071927111 ~2004
1262098301757258980710 ~2003
12621174471009693957711 ~2004
12621772491767048148711 ~2004
1262181301757308780710 ~2003
12621934793029264349711 ~2005
1262267651252453530310 ~2002
Exponent Prime Factor Digits Year
1262289971252457994310 ~2002
1262315591252463118310 ~2002
1262327879252465575910 ~2002
12624350211009948016911 ~2004
1262438123252487624710 ~2002
1262476283252495256710 ~2002
1262490503252498100710 ~2002
1262540459252508091910 ~2002
1262581493757548895910 ~2003
1262605859252521171910 ~2002
1262619959252523991910 ~2002
1262629451252525890310 ~2002
1262635343252527068710 ~2002
126267284314394470410312 ~2006
1262731271252546254310 ~2002
1262750399252550079910 ~2002
1262775491252555098310 ~2002
12628031772020485083311 ~2004
12628150671010252053711 ~2004
1262854991252570998310 ~2002
1263046979252609395910 ~2002
12632367712273826187911 ~2004
1263248039252649607910 ~2002
1263255179252651035910 ~2002
1263277517757966510310 ~2003
Home
4.724.182 digits
e-mail
25-04-13