Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1054679819210935963910 ~2001
1054680197632808118310 ~2003
10546984391054698439111 ~2003
1054705601632823360710 ~2003
10547173991054717399111 ~2003
1054719131210943826310 ~2001
1054774991210954998310 ~2001
1054788419210957683910 ~2001
1054829063210965812710 ~2001
1054839839210967967910 ~2001
1054847099210969419910 ~2001
1054884563210976912710 ~2001
1054898699210979739910 ~2001
1054901591210980318310 ~2001
1054953143210990628710 ~2001
1055069231211013846310 ~2001
1055088851211017770310 ~2001
1055103551211020710310 ~2001
1055111279211022255910 ~2001
10551473514431618874311 ~2005
1055186941633112164710 ~2003
1055200571211040114310 ~2001
1055212643211042528710 ~2001
1055227931844182344910 ~2003
1055240003211048000710 ~2001
Exponent Prime Factor Digits Year
1055294651211058930310 ~2001
1055327723211065544710 ~2001
1055345591211069118310 ~2001
1055352209844281767310 ~2003
1055394503211078900710 ~2001
1055424143211084828710 ~2001
10554255135699297770311 ~2005
1055442743211088548710 ~2001
1055478863211095772710 ~2001
1055481671211096334310 ~2001
1055521583211104316710 ~2001
1055523323211104664710 ~2001
10555564871900001676711 ~2004
1055583719211116743910 ~2001
1055636363211127272710 ~2001
1055668093633400855910 ~2003
1055681303211136260710 ~2001
1055696123211139224710 ~2001
1055733083211146616710 ~2001
1055811719211162343910 ~2001
1055830439211166087910 ~2001
1055859601633515760710 ~2003
1055881643211176328710 ~2001
1055893717633536230310 ~2003
1055894639211178927910 ~2001
Exponent Prime Factor Digits Year
1055900159211180031910 ~2001
1055922239211184447910 ~2001
1055931011211186202310 ~2001
1055957999211191599910 ~2001
1055970911211194182310 ~2001
1055984339211196867910 ~2001
1056077257633646354310 ~2003
1056116101633669660710 ~2003
10561400871901052156711 ~2004
1056202597633721558310 ~2003
10562491495069995915311 ~2005
10562865191901315734311 ~2004
1056351311211270262310 ~2001
1056374591211274918310 ~2001
1056421139211284227910 ~2001
1056427199211285439910 ~2001
1056432659211286531910 ~2001
1056446063211289212710 ~2001
1056459029845167223310 ~2003
1056491077633894646310 ~2003
1056527051211305410310 ~2001
1056536317633921790310 ~2003
1056541679211308335910 ~2001
1056551423211310284710 ~2001
1056589537633953722310 ~2003
Exponent Prime Factor Digits Year
1056636689845309351310 ~2003
1056656897845325517710 ~2003
1056714479211342895910 ~2001
1056717719211343543910 ~2001
1056738359211347671910 ~2001
1056860713634116427910 ~2003
1056874271845499416910 ~2003
1056882719211376543910 ~2001
1056904319211380863910 ~2001
1056956951211391390310 ~2001
1056957131211391426310 ~2001
1056962591211392518310 ~2001
1057099259211419851910 ~2001
1057135979211427195910 ~2001
1057137997634282798310 ~2003
1057151099211430219910 ~2001
1057176563211435312710 ~2001
1057204991845763992910 ~2003
1057213343211442668710 ~2001
10572232631057223263111 ~2003
1057257083211451416710 ~2001
1057291751211458350310 ~2001
10573468973172040691111 ~2004
1057372499211474499910 ~2001
1057375043211475008710 ~2001
Home
4.843.404 digits
e-mail
25-06-08