Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1400630351280126070310 ~2002
1400653283280130656710 ~2002
1400676961840406176710 ~2004
1400681783280136356710 ~2002
14007396711120591736911 ~2004
1400769659280153931910 ~2002
1400776859280155371910 ~2002
14007808934202342679111 ~2005
1400806223280161244710 ~2002
1400809037840485422310 ~2004
1400844551280168910310 ~2002
1400884211280176842310 ~2002
1400896043280179208710 ~2002
14008967091120717367311 ~2004
14009178833642386495911 ~2005
1400923259280184651910 ~2002
1400936123280187224710 ~2002
14010287571120823005711 ~2004
1401073211280214642310 ~2002
1401125903280225180710 ~2002
1401137819280227563910 ~2002
1401165851280233170310 ~2002
1401221903280244380710 ~2002
1401263351280252670310 ~2002
1401345251280269050310 ~2002
Exponent Prime Factor Digits Year
1401363179280272635910 ~2002
1401377231280275446310 ~2002
1401386579280277315910 ~2002
1401392939280278587910 ~2002
14014619691121169575311 ~2004
1401476099280295219910 ~2002
14014774014204432203111 ~2005
1401499763280299952710 ~2002
1401502439280300487910 ~2002
1401514091280302818310 ~2002
14015192337568203858311 ~2006
14015461032242473764911 ~2005
1401685931280337186310 ~2002
14016961676728141601711 ~2006
1401727991280345598310 ~2002
1401737537841042522310 ~2004
14018128611121450288911 ~2004
1401817801841090680710 ~2004
1401838103280367620710 ~2002
1401995993841197595910 ~2004
1402102451280420490310 ~2002
14021087514486748003311 ~2005
1402114979280422995910 ~2002
1402135151280427030310 ~2002
14021737973365217112911 ~2005
Exponent Prime Factor Digits Year
1402223939280444787910 ~2002
1402261799280452359910 ~2002
1402276441841365864710 ~2004
1402278599280455719910 ~2002
1402327691280465538310 ~2002
1402376777841426066310 ~2004
1402392191280478438310 ~2002
1402405079280481015910 ~2002
1402407731280481546310 ~2002
1402414199280482839910 ~2002
14024346672243895467311 ~2005
1402459199280491839910 ~2002
1402459991280491998310 ~2002
1402539683280507936710 ~2002
1402619243280523848710 ~2002
1402621631280524326310 ~2002
1402635023280527004710 ~2002
1402672811280534562310 ~2002
1402726511280545302310 ~2002
1402758251280551650310 ~2002
1402789859280557971910 ~2002
14028136193366752685711 ~2005
14028176871122254149711 ~2004
1402824323280564864710 ~2002
1402868039280573607910 ~2002
Exponent Prime Factor Digits Year
1402868123280573624710 ~2002
1402877951280575590310 ~2002
1402902443280580488710 ~2002
1403157839280631567910 ~2002
1403171459280634291910 ~2002
14032046293087050183911 ~2005
1403208791280641758310 ~2002
1403209499280641899910 ~2002
1403222699280644539910 ~2002
1403290403280658080710 ~2002
14033839635894212644711 ~2006
14035069671122805573711 ~2004
1403521211280704242310 ~2002
1403561501842136900710 ~2004
1403684833842210899910 ~2004
1403686103280737220710 ~2002
1403686703280737340710 ~2002
1403800523280760104710 ~2002
14039187072527053672711 ~2005
1403996651280799330310 ~2002
1404029617842417770310 ~2004
1404036659280807331910 ~2002
1404060023280812004710 ~2002
1404102611280820522310 ~2002
1404104651280820930310 ~2002
Home
4.724.182 digits
e-mail
25-04-13