Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
12762583011021006640911 ~2004
1276282823255256564710 ~2002
1276287671255257534310 ~2002
12763687271276368727111 ~2004
12763751091021100087311 ~2004
1276387811255277562310 ~2002
12764049771021123981711 ~2004
1276433663255286732710 ~2002
1276464803255292960710 ~2002
12765063912297711503911 ~2004
1276579319255315863910 ~2002
12766112571021289005711 ~2004
1276649963255329992710 ~2002
12766609632042657540911 ~2004
1276680131255336026310 ~2002
12766805391021344431311 ~2004
1276690979255338195910 ~2002
1276709459255341891910 ~2002
1276734551255346910310 ~2002
12767848672298212760711 ~2004
1276792043255358408710 ~2002
1276794731255358946310 ~2002
1276849193766109515910 ~2003
1276874663255374932710 ~2002
1276888979255377795910 ~2002
Exponent Prime Factor Digits Year
1276924703255384940710 ~2002
12769740117151054461711 ~2006
1276984931255396986310 ~2002
1276992011255398402310 ~2002
1277009603255401920710 ~2002
12770303691787842516711 ~2004
1277052599255410519910 ~2002
127705342310471838068712 ~2006
1277109083255421816710 ~2002
1277136923255427384710 ~2002
1277224241766334544710 ~2003
1277248151255449630310 ~2002
1277256191255451238310 ~2002
1277296043255459208710 ~2002
1277303123255460624710 ~2002
1277344777766406866310 ~2003
1277376697766426018310 ~2003
1277395681766437408710 ~2003
1277433071255486614310 ~2002
1277439563255487912710 ~2002
1277467799255493559910 ~2002
12776138712044182193711 ~2004
1277620919255524183910 ~2002
1277624531255524906310 ~2002
12776322591022105807311 ~2004
Exponent Prime Factor Digits Year
1277639183255527836710 ~2002
1277660711255532142310 ~2002
12777054911277705491111 ~2004
1277782763255556552710 ~2002
12778191493833457447111 ~2005
1277842343255568468710 ~2002
12778429991277842999111 ~2004
1277853431255570686310 ~2002
1277869553766721731910 ~2003
1277880479255576095910 ~2002
1277916457766749874310 ~2003
12779423831277942383111 ~2004
12779474211022357936911 ~2004
1277969717766781830310 ~2003
12780248337156939064911 ~2006
1278025559255605111910 ~2002
1278032219255606443910 ~2002
12782641336902626318311 ~2006
1278270299255654059910 ~2002
1278292439255658487910 ~2002
1278305771255661154310 ~2002
1278317951255663590310 ~2002
1278320531255664106310 ~2002
1278321419255664283910 ~2002
12783457696903067152711 ~2006
Exponent Prime Factor Digits Year
1278373451255674690310 ~2002
1278380459255676091910 ~2002
1278384839255676967910 ~2002
1278522431255704486310 ~2002
1278584171255716834310 ~2002
12785843571790018099911 ~2004
1278593639255718727910 ~2002
1278610241767166144710 ~2003
1278626521767175912710 ~2003
1278719303255743860710 ~2002
1278735061767241036710 ~2003
1278750611255750122310 ~2002
1278823523255764704710 ~2002
12788426111278842611111 ~2004
12788679236394339615111 ~2006
1278878297767326978310 ~2003
1278888599255777719910 ~2002
1278891899255778379910 ~2002
12789274912302069483911 ~2004
1278962579255792515910 ~2002
1278995351255799070310 ~2002
1279019303255803860710 ~2002
1279063319255812663910 ~2002
1279099691255819938310 ~2002
1279110323255822064710 ~2002
Home
4.724.182 digits
e-mail
25-04-13