Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
12918958332067033332911 ~2004
1291954019258390803910 ~2002
12919841471291984147111 ~2004
1292021183258404236710 ~2002
1292022323258404464710 ~2002
1292057843258411568710 ~2002
12920710971033656877711 ~2004
1292077859258415571910 ~2002
12920997711033679816911 ~2004
1292121613775272967910 ~2003
1292133119258426623910 ~2002
1292138591258427718310 ~2002
1292182313775309387910 ~2003
1292183699258436739910 ~2002
1292194451258438890310 ~2002
1292219399258443879910 ~2002
1292263859258452771910 ~2002
1292287439258457487910 ~2002
1292337479258467495910 ~2002
1292371319258474263910 ~2002
1292396531258479306310 ~2002
12924654133101916991311 ~2005
1292479283258495856710 ~2002
1292526899258505379910 ~2002
1292551283258510256710 ~2002
Exponent Prime Factor Digits Year
1292584619258516923910 ~2002
1292590391258518078310 ~2002
1292629823258525964710 ~2002
1292723951258544790310 ~2002
1292776343258555268710 ~2002
12927929293102703029711 ~2005
12927964314136948579311 ~2005
1292818379258563675910 ~2002
1292937071258587414310 ~2002
1292956331258591266310 ~2002
1293090563258618112710 ~2002
1293107171258621434310 ~2002
1293114923258622984710 ~2002
12931254471034500357711 ~2004
1293146171258629234310 ~2002
1293227423258645484710 ~2002
12932943771034635501711 ~2004
1293311891258662378310 ~2002
1293370271258674054310 ~2002
1293453593776072155910 ~2003
12935269812845759358311 ~2005
1293548783258709756710 ~2002
1293563363258712672710 ~2002
12935695271293569527111 ~2004
1293618659258723731910 ~2002
Exponent Prime Factor Digits Year
1293626051258725210310 ~2002
12936933912069909425711 ~2004
1293715463258743092710 ~2002
1293718031258743606310 ~2002
12937387512069982001711 ~2004
1293764579258752915910 ~2002
12937752431293775243111 ~2004
1293793637776276182310 ~2003
1293835139258767027910 ~2002
1293839303258767860710 ~2002
1293869471258773894310 ~2002
1293943019258788603910 ~2002
1293971543258794308710 ~2002
1293973679258794735910 ~2002
1294010183258802036710 ~2002
1294076039258815207910 ~2002
1294091531258818306310 ~2002
1294205459258841091910 ~2002
1294206911258841382310 ~2002
12942091791035367343311 ~2004
12942599773106223944911 ~2005
1294283723258856744710 ~2002
12942899634141727881711 ~2005
12943270096989365848711 ~2006
1294367999258873599910 ~2002
Exponent Prime Factor Digits Year
1294370039258874007910 ~2002
1294400981776640588710 ~2003
1294419443258883888710 ~2002
1294496471258899294310 ~2002
1294501139258900227910 ~2002
1294524683258904936710 ~2002
12945433013883629903111 ~2005
1294574591258914918310 ~2002
1294633871258926774310 ~2002
1294637339258927467910 ~2002
1294654103258930820710 ~2002
1294654799258930959910 ~2002
1294670831258934166310 ~2002
1294687211258937442310 ~2002
1294694039258938807910 ~2002
1294698719258939743910 ~2002
1294741391258948278310 ~2002
1294746539258949307910 ~2002
1294853723258970744710 ~2002
1294866563258973312710 ~2002
1294912319258982463910 ~2002
1294983251258996650310 ~2002
1295012819259002563910 ~2002
12950620734144198633711 ~2005
1295072041777043224710 ~2003
Home
4.724.182 digits
e-mail
25-04-13