Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
935868733561521239910 ~2002
935875079187175015910 ~2001
935967463935967463110 ~2003
935968703187193740710 ~2001
935997971187199594310 ~2001
936020951187204190310 ~2001
9360246472246459152911 ~2004
936051983187210396710 ~2001
936057299187211459910 ~2001
9360703572808211071111 ~2004
936080003187216000710 ~2001
936086363187217272710 ~2001
9360912532246619007311 ~2004
936118499187223699910 ~2001
936135839187227167910 ~2001
936142079187228415910 ~2001
936148523187229704710 ~2001
9361616591685090986311 ~2003
9361630492995721756911 ~2004
936246743187249348710 ~2001
936263591187252718310 ~2001
936309371187261874310 ~2001
936318959187263791910 ~2001
936332591187266518310 ~2001
936383699187276739910 ~2001
Exponent Prime Factor Digits Year
936383951187276790310 ~2001
936397571187279514310 ~2001
936459071187291814310 ~2001
936466991187293398310 ~2001
936482357561889414310 ~2002
936513181561907908710 ~2002
936533651187306730310 ~2001
936558923187311784710 ~2001
936586991187317398310 ~2001
936588091936588091110 ~2003
936609901561965940710 ~2002
936624043936624043110 ~2003
936632701561979620710 ~2002
936634943187326988710 ~2001
936649733561989839910 ~2002
936669659187333931910 ~2001
936678419187335683910 ~2001
936680939187336187910 ~2001
936685273562011163910 ~2002
9367039493559475006311 ~2004
936746339187349267910 ~2001
936768011187353602310 ~2001
936782123187356424710 ~2001
9367935131498869620911 ~2003
936804359749443487310 ~2003
Exponent Prime Factor Digits Year
936805273562083163910 ~2002
936822923187364584710 ~2001
936838013562102807910 ~2002
936860231187372046310 ~2001
936898561562139136710 ~2002
936919021562151412710 ~2002
936924551749539640910 ~2003
9369544131311736178311 ~2003
936963877562178326310 ~2002
936984731187396946310 ~2001
936993923187398784710 ~2001
937001459187400291910 ~2001
937002239187400447910 ~2001
937007339187401467910 ~2001
937094243187418848710 ~2001
937098521562259112710 ~2002
937176683187435336710 ~2001
937181543187436308710 ~2001
937181681562309008710 ~2002
937232711187446542310 ~2001
937236869749789495310 ~2003
937239311187447862310 ~2001
9372424514498763764911 ~2004
937261103187452220710 ~2001
9373162095998823737711 ~2005
Exponent Prime Factor Digits Year
937339163187467832710 ~2001
937360103187472020710 ~2001
937370711187474142310 ~2001
937407277562444366310 ~2002
937408961562445376710 ~2002
937436723187487344710 ~2001
9374382911687388923911 ~2003
937445533562467319910 ~2002
937452053562471231910 ~2002
937460663187492132710 ~2001
937484591187496918310 ~2001
937514531187502906310 ~2001
937624957562574974310 ~2002
937643243187528648710 ~2001
937672871187534574310 ~2001
9376770472437960322311 ~2004
937708451187541690310 ~2001
9377134616751536919311 ~2005
937756199187551239910 ~2001
937837139750269711310 ~2003
937896419187579283910 ~2001
937913441562748064710 ~2002
937915799187583159910 ~2001
937980539187596107910 ~2001
937985231187597046310 ~2001
Home
4.843.404 digits
e-mail
25-06-08