Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1298163457778898074310 ~2003
1298175563259635112710 ~2002
1298186243259637248710 ~2002
12981947691817472676711 ~2004
1298216063259643212710 ~2002
1298227013778936207910 ~2003
1298242943259648588710 ~2002
12984151335972709611911 ~2006
12984295011038743600911 ~2004
1298604479259720895910 ~2002
1298659403259731880710 ~2002
1298668643259733728710 ~2002
12987429473116983072911 ~2005
12987865391298786539111 ~2004
1298787863259757572710 ~2002
12988745832078199332911 ~2004
1298898959259779791910 ~2002
1298927417779356450310 ~2003
1298959331259791866310 ~2002
12989598972078335835311 ~2004
12990096311299009631111 ~2004
1299064463259812892710 ~2002
1299104591259820918310 ~2002
1299106439259821287910 ~2002
1299122339259824467910 ~2002
Exponent Prime Factor Digits Year
1299128279259825655910 ~2002
12991596891818823564711 ~2004
1299211139259842227910 ~2002
12992872335197148932111 ~2005
1299316019259863203910 ~2002
1299368053779620831910 ~2003
12994203293118608789711 ~2005
1299490103259898020710 ~2002
1299531179259906235910 ~2002
1299538873779723323910 ~2003
12995478911299547891111 ~2004
1299556691259911338310 ~2002
1299564971259912994310 ~2002
1299596891259919378310 ~2002
12996934635198773852111 ~2005
1299702841779821704710 ~2003
12997094093119302581711 ~2005
1299717803259943560710 ~2002
1299758231259951646310 ~2002
1299863291259972658310 ~2002
1299895799259979159910 ~2002
1299903383259980676710 ~2002
1299905543259981108710 ~2002
1299911939259982387910 ~2002
1299934793779960875910 ~2003
Exponent Prime Factor Digits Year
1299993671259998734310 ~2002
1300032683260006536710 ~2002
1300062443260012488710 ~2002
13001022592340184066311 ~2005
1300142951260028590310 ~2002
1300169723260033944710 ~2002
1300196123260039224710 ~2002
1300228177780136906310 ~2003
1300270343260054068710 ~2002
1300340201780204120710 ~2003
1300347311260069462310 ~2002
13003483971040278717711 ~2004
13003485071300348507111 ~2004
1300441451260088290310 ~2002
13004473971040357917711 ~2004
1300447921780268752710 ~2003
1300500203260100040710 ~2002
1300528561780317136710 ~2003
1300558481780335088710 ~2003
1300562171260112434310 ~2002
1300624211260124842310 ~2002
1300661231260132246310 ~2002
1300741511260148302310 ~2002
1300773431260154686310 ~2002
1300787783260157556710 ~2002
Exponent Prime Factor Digits Year
1300812203260162440710 ~2002
1300822277780493366310 ~2003
1300840511260168102310 ~2002
1300843403260168680710 ~2002
1300865651260173130310 ~2002
1300881061780528636710 ~2003
1300927343260185468710 ~2002
1300932323260186464710 ~2002
130093698112488995017712 ~2006
13009435371040754829711 ~2004
1300980731260196146310 ~2002
1301010041780606024710 ~2003
1301031191260206238310 ~2002
1301031911260206382310 ~2002
1301174723260234944710 ~2002
1301249051260249810310 ~2002
1301250239260250047910 ~2002
1301266919260253383910 ~2002
1301363363260272672710 ~2002
13013736591041098927311 ~2004
1301410031260282006310 ~2002
13014214371041137149711 ~2004
13014426071301442607111 ~2004
130144813119001142712712 ~2007
1301456543260291308710 ~2002
Home
4.724.182 digits
e-mail
25-04-13