Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1107189263221437852710 ~2002
1107202391221440478310 ~2002
1107266003221453200710 ~2002
1107267659221453531910 ~2002
1107268559221453711910 ~2002
110730822116609623315112 ~2006
1107362411885889928910 ~2003
11073672711993261087911 ~2004
11073999132657759791311 ~2004
11074029314651092310311 ~2005
110740509713953304222312 ~2006
1107481283221496256710 ~2002
1107492131221498426310 ~2002
1107492521664495512710 ~2003
11075397911107539791111 ~2003
1107605651221521130310 ~2002
1107616883221523376710 ~2002
1107618023221523604710 ~2002
1107636899221527379910 ~2002
1107640883221528176710 ~2002
1107648203221529640710 ~2002
11076703371550738471911 ~2004
1107674339221534867910 ~2002
1107708419221541683910 ~2002
1107709643221541928710 ~2002
Exponent Prime Factor Digits Year
11077262711107726271111 ~2003
1107741443221548288710 ~2002
1107743381664646028710 ~2003
11078049611772487937711 ~2004
1107809321664685592710 ~2003
1107834407886267525710 ~2003
1107849593664709755910 ~2003
1107887723221577544710 ~2002
1107897299221579459910 ~2002
1107926783221585356710 ~2002
1107934571221586914310 ~2002
1107959423221591884710 ~2002
1107995159221599031910 ~2002
1108002503221600500710 ~2002
1108065971221613194310 ~2002
1108079123221615824710 ~2002
1108109777664865866310 ~2003
1108110863221622172710 ~2002
11081322174210902424711 ~2005
11081687234654308636711 ~2005
1108196113664917667910 ~2003
1108286111221657222310 ~2002
1108304003221660800710 ~2002
1108356563221671312710 ~2002
1108385783221677156710 ~2002
Exponent Prime Factor Digits Year
1108397819221679563910 ~2002
1108480739221696147910 ~2002
1108491017665094610310 ~2003
1108534211221706842310 ~2002
1108622171221724434310 ~2002
1108686959221737391910 ~2002
1108690811221738162310 ~2002
1108705523221741104710 ~2002
1108706759221741351910 ~2002
1108720139221744027910 ~2002
1108751459221750291910 ~2002
1108759103221751820710 ~2002
1108799519221759903910 ~2002
11088078071774092491311 ~2004
1108857131221771426310 ~2002
1108863851221772770310 ~2002
11088800111108880011111 ~2003
1108890479221778095910 ~2002
1108890953665334571910 ~2003
1108901999221780399910 ~2002
1108902917665341750310 ~2003
11089096637318803775911 ~2005
1108914431221782886310 ~2002
1108925159221785031910 ~2002
11089352597097185657711 ~2005
Exponent Prime Factor Digits Year
1108949843221789968710 ~2002
1108974613665384767910 ~2003
1108974983221794996710 ~2002
1109011199887208959310 ~2003
11090408331552657166311 ~2004
1109193119221838623910 ~2002
1109205197665523118310 ~2003
1109213519221842703910 ~2002
1109223551221844710310 ~2002
11092380791109238079111 ~2003
1109254261665552556710 ~2003
11093399533328019859111 ~2005
1109340119221868023910 ~2002
1109486303221897260710 ~2002
1109496299221899259910 ~2002
1109535683221907136710 ~2002
1109542223221908444710 ~2002
1109621963221924392710 ~2002
1109646311221929262310 ~2002
1109652419221930483910 ~2002
11096681114660606066311 ~2005
11096696471997405364711 ~2004
1109704781887763824910 ~2003
1109712011221942402310 ~2002
1109721989887777591310 ~2003
Home
4.843.404 digits
e-mail
25-06-08