Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1470131639294026327910 ~2003
14702766671470276667111 ~2004
1470296111294059222310 ~2003
14703213672646578460711 ~2005
1470331199294066239910 ~2003
1470374771294074954310 ~2003
14703864291176309143311 ~2004
1470432143294086428710 ~2003
1470445079294089015910 ~2003
1470526559294105311910 ~2003
1470539723294107944710 ~2003
1470651131294130226310 ~2003
1470657563294131512710 ~2003
1470658103294131620710 ~2003
1470700043294140008710 ~2003
1470701819294140363910 ~2003
1470760079294152015910 ~2003
147079711315002130552712 ~2007
14708209332353313492911 ~2005
1470823583294164716710 ~2003
14708973772059256327911 ~2005
14709975977060788465711 ~2006
1471077203294215440710 ~2003
1471135331294227066310 ~2003
14711419132059598678311 ~2005
Exponent Prime Factor Digits Year
14711501811176920144911 ~2004
1471250471294250094310 ~2003
14713137975885255188111 ~2006
1471395059294279011910 ~2003
1471411283294282256710 ~2003
1471419563294283912710 ~2003
1471422371294284474310 ~2003
1471438561882863136710 ~2004
1471459117882875470310 ~2004
1471505221882903132710 ~2004
1471534931294306986310 ~2003
1471575179294315035910 ~2003
1471585499294317099910 ~2003
1471598573882959143910 ~2004
14716043692060246116711 ~2005
1471612619294322523910 ~2003
1471660871294332174310 ~2003
1471688363294337672710 ~2003
1471711931294342386310 ~2003
1471764551294352910310 ~2003
1471775579294355115910 ~2003
14718511371177480909711 ~2004
14718717111177497368911 ~2004
1471872443294374488710 ~2003
14718960712649412927911 ~2005
Exponent Prime Factor Digits Year
1471922357883153414310 ~2004
1471971563294394312710 ~2003
1471971731294394346310 ~2003
1472060519294412103910 ~2003
1472070497883242298310 ~2004
1472103359294420671910 ~2003
1472113859294422771910 ~2003
14721705432355472868911 ~2005
1472172899294434579910 ~2003
1472182319294436463910 ~2003
1472212271294442454310 ~2003
14722278191472227819111 ~2004
1472231723294446344710 ~2003
14722710493238996307911 ~2005
1472320523294464104710 ~2003
1472374691294474938310 ~2003
1472386523294477304710 ~2003
1472413619294482723910 ~2003
1472433419294486683910 ~2003
14724355671177948453711 ~2004
1472465003294493000710 ~2003
1472496911294499382310 ~2003
1472522699294504539910 ~2003
1472599477883559686310 ~2004
1472628719294525743910 ~2003
Exponent Prime Factor Digits Year
1472636699294527339910 ~2003
1472707997883624798310 ~2004
1472732171294546434310 ~2003
1472752223294550444710 ~2003
1472755139294551027910 ~2003
1472771411294554282310 ~2003
1472803571294560714310 ~2003
147281433724448717994312 ~2007
1472859551294571910310 ~2003
1472880131294576026310 ~2003
1472920979294584195910 ~2003
14729565532062139174311 ~2005
1472958131294591626310 ~2003
1472972771294594554310 ~2003
1472977763294595552710 ~2003
1472987591294597518310 ~2003
1473017233883810339910 ~2004
14731140291178491223311 ~2004
14732419213241132226311 ~2005
1473315323294663064710 ~2003
1473376559294675311910 ~2003
14734063911178725112911 ~2004
1473408383294681676710 ~2003
14734760211178780816911 ~2004
147355000363657360129712 ~2008
Home
4.724.182 digits
e-mail
25-04-13