Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1343311451268662290310 ~2002
13433360695104677062311 ~2005
1343425091268685018310 ~2002
1343434283268686856710 ~2002
1343447879268689575910 ~2002
13436258172149801307311 ~2004
1343633783268726756710 ~2002
13436568377255746919911 ~2006
1343763719268752743910 ~2002
1343775539268755107910 ~2002
1343824043268764808710 ~2002
1343881631268776326310 ~2002
1343928161806356896710 ~2003
1343978963268795792710 ~2002
13439799431343979943111 ~2004
13440464811075237184911 ~2004
134412193911828273063312 ~2006
13441327913494745256711 ~2005
13441490696451915531311 ~2006
1344177083268835416710 ~2002
1344192757806515654310 ~2003
1344198539268839707910 ~2002
1344208199268841639910 ~2002
1344252179268850435910 ~2002
1344327191268865438310 ~2002
Exponent Prime Factor Digits Year
1344416039268883207910 ~2002
134446291916133555028112 ~2007
1344519311268903862310 ~2002
13445246893226859253711 ~2005
1344531157806718694310 ~2003
13445678112151308497711 ~2004
13445713315647199590311 ~2006
13445953934033786179111 ~2005
1344604619268920923910 ~2002
1344641339268928267910 ~2002
1344680783268936156710 ~2002
1344763153806857891910 ~2003
1344770243268954048710 ~2002
1344771563268954312710 ~2002
1344849791268969958310 ~2002
13448639111344863911111 ~2004
1344885383268977076710 ~2002
1344924071268984814310 ~2002
1344962051268992410310 ~2002
1345007123269001424710 ~2002
1345011599269002319910 ~2002
1345056851269011370310 ~2002
13450724471345072447111 ~2004
1345152023269030404710 ~2002
1345160039269032007910 ~2002
Exponent Prime Factor Digits Year
13451727471076138197711 ~2004
1345178171269035634310 ~2002
13451942511076155400911 ~2004
1345216979269043395910 ~2002
13453743673228898480911 ~2005
1345423379269084675910 ~2002
1345448711269089742310 ~2002
1345478377807287026310 ~2003
1345508051269101610310 ~2002
1345510643269102128710 ~2002
1345550579269110115910 ~2002
1345687919269137583910 ~2002
13457228633498879443911 ~2005
1345724531269144906310 ~2002
1345746263269149252710 ~2002
1345761359269152271910 ~2002
1345768441807461064710 ~2003
1345807019269161403910 ~2002
1345823123269164624710 ~2002
134583977316150077276112 ~2007
1345843391269168678310 ~2002
1345868423269173684710 ~2002
1345888679269177735910 ~2002
1345926133807555679910 ~2003
134595018720727632879912 ~2007
Exponent Prime Factor Digits Year
1345951703269190340710 ~2002
1345967699269193539910 ~2002
1346111891269222378310 ~2002
1346166623269233324710 ~2002
1346180399269236079910 ~2002
1346216171269243234310 ~2002
1346295701807777420710 ~2003
13463285471346328547111 ~2004
1346346917807808150310 ~2003
13463808435385523372111 ~2005
1346393641807836184710 ~2003
1346463311269292662310 ~2002
1346476811269295362310 ~2002
1346507951269301590310 ~2002
1346542943269308588710 ~2002
1346597099269319419910 ~2002
1346635379269327075910 ~2002
1346655683269331136710 ~2002
1346659103269331820710 ~2002
1346678831269335766310 ~2002
1346712617808027570310 ~2003
1346718179269343635910 ~2002
13468481471346848147111 ~2004
1346872823269374564710 ~2002
1346878763269375752710 ~2002
Home
4.724.182 digits
e-mail
25-04-13