Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1236632231247326446310 ~2002
1236652691247330538310 ~2002
1236722471247344494310 ~2002
1236778859247355771910 ~2002
1236849599247369919910 ~2002
1236860939247372187910 ~2002
1236877133742126279910 ~2003
1236887219247377443910 ~2002
1236937181742162308710 ~2003
12370092838164261267911 ~2006
1237042931247408586310 ~2002
1237053143247410628710 ~2002
1237155743247431148710 ~2002
12371942238165481871911 ~2006
12372080571732091279911 ~2004
1237210979247442195910 ~2002
1237215491247443098310 ~2002
1237218971247443794310 ~2002
1237223363247444672710 ~2002
1237237103247447420710 ~2002
1237352411247470482310 ~2002
1237366439247473287910 ~2002
1237385483247477096710 ~2002
1237409879247481975910 ~2002
1237422419247484483910 ~2002
Exponent Prime Factor Digits Year
1237527803247505560710 ~2002
12375413035197673472711 ~2005
1237552499247510499910 ~2002
1237558643247511728710 ~2002
1237564199247512839910 ~2002
12375889991237588999111 ~2004
1237605851247521170310 ~2002
12376252994950501196111 ~2005
1237646783247529356710 ~2002
1237653841742592304710 ~2003
1237670309990136247310 ~2003
12377134974703311288711 ~2005
1237789463247557892710 ~2002
12378041893713412567111 ~2005
123783474717824820356912 ~2007
1237844963247568992710 ~2002
12378643372970874408911 ~2005
1237871543247574308710 ~2002
1237872491247574498310 ~2002
1237886459247577291910 ~2002
1237926311247585262310 ~2002
1237931351247586270310 ~2002
1237938839990351071310 ~2003
1237946041742767624710 ~2003
1237966199247593239910 ~2002
Exponent Prime Factor Digits Year
1237990811990392648910 ~2003
1238088661742853196710 ~2003
1238141291247628258310 ~2002
1238149163247629832710 ~2002
1238161157742896694310 ~2003
1238170379247634075910 ~2002
1238182859247636571910 ~2002
12382100815943408388911 ~2005
1238215031247643006310 ~2002
1238287859247657571910 ~2002
1238402833743041699910 ~2003
1238417933743050759910 ~2003
1238417951247683590310 ~2002
1238420483247684096710 ~2002
1238449319247689863910 ~2002
1238476451247695290310 ~2002
12384810713220050784711 ~2005
1238513819247702763910 ~2002
1238536571247707314310 ~2002
1238542043247708408710 ~2002
1238562881743137728710 ~2003
1238597999247719599910 ~2002
1238635679247727135910 ~2002
1238656541743193924710 ~2003
1238670143247734028710 ~2002
Exponent Prime Factor Digits Year
1238679791247735958310 ~2002
1238811733743287039910 ~2003
1238858639247771727910 ~2002
1238859899247771979910 ~2002
1238872139247774427910 ~2002
1238892899247778579910 ~2002
1238933639247786727910 ~2002
1238945219247789043910 ~2002
1238984963247796992710 ~2002
1239006683247801336710 ~2002
1239025661743415396710 ~2003
1239077783247815556710 ~2002
1239088751247817750310 ~2002
1239103499247820699910 ~2002
1239190921743514552710 ~2003
1239221831247844366310 ~2002
1239238753743543251910 ~2003
1239264479247852895910 ~2002
1239305161743583096710 ~2003
1239330017991464013710 ~2003
1239350471247870094310 ~2002
1239380339247876067910 ~2002
1239436631247887326310 ~2002
1239460679247892135910 ~2002
1239502937991602349710 ~2003
Home
4.843.404 digits
e-mail
25-06-08