Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1554027743310805548710 ~2003
1554074519310814903910 ~2003
1554090557932454334310 ~2004
1554163991310832798310 ~2003
15541901712797542307911 ~2005
15542761371243420909711 ~2004
1554284183310856836710 ~2003
1554329963310865992710 ~2003
1554352201932611320710 ~2004
1554365951310873190310 ~2003
1554445883310889176710 ~2003
15545872636529266504711 ~2006
155466029323319904395112 ~2007
1554681143310936228710 ~2003
1554691091310938218310 ~2003
1554752471310950494310 ~2003
1554809801932885880710 ~2004
1554836771310967354310 ~2003
1554850403310970080710 ~2003
1554854363310970872710 ~2003
1554881879310976375910 ~2003
1554920701932952420710 ~2004
1554928223310985644710 ~2003
1555013423311002684710 ~2003
1555092023311018404710 ~2003
Exponent Prime Factor Digits Year
1555134593933080755910 ~2004
15551559891244124791311 ~2004
1555227683311045536710 ~2003
1555319281933191568710 ~2004
1555394111311078822310 ~2003
15554210811244336864911 ~2004
1555453379311090675910 ~2003
15554772917466290996911 ~2006
15555018411244401472911 ~2004
1555520231311104046310 ~2003
1555580219311116043910 ~2003
1555639439311127887910 ~2003
1555675799311135159910 ~2003
1555813643311162728710 ~2003
1555848053933508831910 ~2004
1555892771311178554310 ~2003
15560464933734511583311 ~2005
1556073131311214626310 ~2003
1556133263311226652710 ~2003
15561525711244922056911 ~2004
1556189279311237855910 ~2003
15561971271244957701711 ~2004
1556248511311249702310 ~2003
1556263451311252690310 ~2003
1556361011311272202310 ~2003
Exponent Prime Factor Digits Year
1556460683311292136710 ~2003
1556493551311298710310 ~2003
1556583239311316647910 ~2003
1556690351311338070310 ~2003
1556730299311346059910 ~2003
15567306192802115114311 ~2005
1556739491311347898310 ~2003
1556757791311351558310 ~2003
1556793503311358700710 ~2003
1556825639311365127910 ~2003
1556887481934132488710 ~2004
1556899199311379839910 ~2003
1556903891311380778310 ~2003
1557092723311418544710 ~2003
1557141923311428384710 ~2003
1557197303311439460710 ~2003
15572028591245762287311 ~2004
1557226283311445256710 ~2003
1557228791311445758310 ~2003
1557283439311456687910 ~2003
1557292559311458511910 ~2003
1557308471311461694310 ~2003
15574488591245959087311 ~2004
1557475763311495152710 ~2003
1557532199311506439910 ~2003
Exponent Prime Factor Digits Year
1557592321934555392710 ~2004
1557603083311520616710 ~2003
1557666419311533283910 ~2003
15576977811246158224911 ~2004
15576983772492317403311 ~2005
1557719951311543990310 ~2003
1557759053934655431910 ~2004
1557765383311553076710 ~2003
1557843121934705872710 ~2004
1557851759311570351910 ~2003
155786868721187014143312 ~2007
1557952043311590408710 ~2003
1558149431311629886310 ~2003
15581727415921056415911 ~2006
1558183619311636723910 ~2003
1558188143311637628710 ~2003
1558198403311639680710 ~2003
15582372072493179531311 ~2005
1558307453934984471910 ~2004
1558384031311676806310 ~2003
1558501523311700304710 ~2003
1558540811311708162310 ~2003
1558583759311716751910 ~2003
1558657873935194723910 ~2004
15586742391246939391311 ~2004
Home
4.724.182 digits
e-mail
25-04-13