Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1286360891257272178310 ~2002
1286411363257282272710 ~2002
1286451503257290300710 ~2002
128645525915694754159912 ~2007
12864604194116673340911 ~2005
1286518559257303711910 ~2002
1286524081771914448710 ~2003
12865459916432729955111 ~2006
1286562059257312411910 ~2002
1286562793771937675910 ~2003
1286598179257319635910 ~2002
1286637257771982354310 ~2003
12866485911029318872911 ~2004
12866539191029323135311 ~2004
1286675399257335079910 ~2002
12866852691029348215311 ~2004
1286700203257340040710 ~2002
12867111839264320517711 ~2006
12867657411029412592911 ~2004
1286776391257355278310 ~2002
12868375971029470077711 ~2004
1286840003257368000710 ~2002
1286890883257378176710 ~2002
12869229293088615029711 ~2005
1286944283257388856710 ~2002
Exponent Prime Factor Digits Year
1286955119257391023910 ~2002
1286959057772175434310 ~2003
1287021803257404360710 ~2002
1287036841772222104710 ~2003
1287163571257432714310 ~2002
1287205319257441063910 ~2002
1287231191257446238310 ~2002
1287235451257447090310 ~2002
12872941493089505957711 ~2005
1287307523257461504710 ~2002
1287410521772446312710 ~2003
1287505679257501135910 ~2002
1287519911257503982310 ~2002
1287565511257513102310 ~2002
1287585941772551564710 ~2003
1287612541772567524710 ~2003
1287618433772571059910 ~2003
12876379731802693162311 ~2004
1287722939257544587910 ~2002
1287734543257546908710 ~2002
1287740017772644010310 ~2003
1287779651257555930310 ~2002
1287787103257557420710 ~2002
1287792419257558483910 ~2002
1287800231257560046310 ~2002
Exponent Prime Factor Digits Year
1287817859257563571910 ~2002
1287827759257565551910 ~2002
1287836183257567236710 ~2002
1287840563257568112710 ~2002
1287854693772712815910 ~2003
1287855623257571124710 ~2002
1287861557772716934310 ~2003
1287885503257577100710 ~2002
1287891239257578247910 ~2002
1287891901772735140710 ~2003
1287973859257594771910 ~2002
1287982739257596547910 ~2002
1288021103257604220710 ~2002
1288038131257607626310 ~2002
1288038611257607722310 ~2002
12880444311030435544911 ~2004
1288056437772833862310 ~2003
1288101179257620235910 ~2002
1288117823257623564710 ~2002
1288163077772897846310 ~2003
1288198643257639728710 ~2002
1288216703257643340710 ~2002
1288266599257653319910 ~2002
1288275533772965319910 ~2003
1288339919257667983910 ~2002
Exponent Prime Factor Digits Year
12883720932061395348911 ~2004
1288389541773033724710 ~2003
1288402463257680492710 ~2002
1288427531257685506310 ~2002
1288475759257695151910 ~2002
12884803131803872438311 ~2004
1288484231257696846310 ~2002
1288488563257697712710 ~2002
1288507931257701586310 ~2002
1288541701773125020710 ~2003
1288580291257716058310 ~2002
1288585559257717111910 ~2002
1288618553773171131910 ~2003
1288648199257729639910 ~2002
1288808159257761631910 ~2002
1288824637773294782310 ~2003
1288890481773334288710 ~2003
1288930763257786152710 ~2002
12889513816186966628911 ~2006
1288972523257794504710 ~2002
1288999703257799940710 ~2002
12890059011031204720911 ~2004
1289043179257808635910 ~2002
1289071241773442744710 ~2003
1289072819257814563910 ~2002
Home
4.843.404 digits
e-mail
25-06-08