Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1038716999207743399910 ~2001
10387220116855565272711 ~2005
1038741659207748331910 ~2001
1038750143207750028710 ~2001
1038767111831013688910 ~2003
1038772079207754415910 ~2001
1038800041623280024710 ~2003
1038823441623294064710 ~2003
1038842351207768470310 ~2001
1038898391207779678310 ~2001
1038905711207781142310 ~2001
1038923423207784684710 ~2001
1038924479207784895910 ~2001
1038930551207786110310 ~2001
1038940403207788080710 ~2001
1038956053623373631910 ~2003
1038962651207792530310 ~2001
1039028411207805682310 ~2001
1039043543207808708710 ~2001
10391043471870387824711 ~2004
1039166603207833320710 ~2001
1039170131207834026310 ~2001
1039225541831380432910 ~2003
1039229561623537736710 ~2003
1039263503207852700710 ~2001
Exponent Prime Factor Digits Year
1039268017623560810310 ~2003
10393076091455030652711 ~2003
1039379441623627664710 ~2003
1039384799207876959910 ~2001
10393959115820617101711 ~2005
103941376121411923476712 ~2006
1039450199207890039910 ~2001
1039455551207891110310 ~2001
1039477739207895547910 ~2001
1039485191831588152910 ~2003
1039490519207898103910 ~2001
1039493879207898775910 ~2001
1039602023207920404710 ~2001
1039612163207922432710 ~2001
1039613459831690767310 ~2003
1039618451207923690310 ~2001
10396395431039639543111 ~2003
1039675961623805576710 ~2003
1039741037623844622310 ~2003
1039742351207948470310 ~2001
1039821059207964211910 ~2001
1039874711207974942310 ~2001
1039893623207978724710 ~2001
1039907279207981455910 ~2001
1039924211207984842310 ~2001
Exponent Prime Factor Digits Year
1039924631207984926310 ~2001
1039936151207987230310 ~2001
10399405571663904891311 ~2004
1039953371207990674310 ~2001
1039969481623981688710 ~2003
1039971143207994228710 ~2001
1039985797623991478310 ~2003
1039999223207999844710 ~2001
10400153092496036741711 ~2004
1040022419208004483910 ~2001
1040027281624016368710 ~2003
1040049119208009823910 ~2001
1040058203208011640710 ~2001
1040070719208014143910 ~2001
1040083721624050232710 ~2003
1040141051208028210310 ~2001
1040206883208041376710 ~2001
1040227619208045523910 ~2001
10402699871040269987111 ~2003
1040273483208054696710 ~2001
1040305439208061087910 ~2001
1040323241624193944710 ~2003
10403257391040325739111 ~2003
1040379443208075888710 ~2001
1040410223208082044710 ~2001
Exponent Prime Factor Digits Year
10404531311664725009711 ~2004
1040460803208092160710 ~2001
1040506451208101290310 ~2001
1040510147832408117710 ~2003
1040513423208102684710 ~2001
1040530691208106138310 ~2001
1040531111208106222310 ~2001
10405698372497367608911 ~2004
10405984015827351045711 ~2005
1040647981624388788710 ~2003
10406632931665061268911 ~2004
1040700673624420403910 ~2003
10407055915203527955111 ~2005
1040715719208143143910 ~2001
1040721497624432898310 ~2003
1040728901624437340710 ~2003
1040757023208151404710 ~2001
10407598971457063855911 ~2003
1040797643208159528710 ~2001
1040812931208162586310 ~2001
1040818277624490966310 ~2003
1040856779208171355910 ~2001
1040870111208174022310 ~2001
1040965223208193044710 ~2001
1041042731208208546310 ~2001
Home
4.933.056 digits
e-mail
25-07-20