Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
15776851493786444357711 ~2005
15776882271262150581711 ~2004
1577689031315537806310 ~2003
157771715911359563544912 ~2007
1577857097946714258310 ~2004
1577962741946777644710 ~2004
1578047651315609530310 ~2003
1578163621946898172710 ~2004
1578229553946937731910 ~2004
157823074911047615243112 ~2007
1578267217946960330310 ~2004
1578316559315663311910 ~2003
1578327313946996387910 ~2004
1578388391315677678310 ~2003
1578567071315713414310 ~2003
1578654503315730900710 ~2003
1578667679315733535910 ~2003
1578683941947210364710 ~2004
1578703823315740764710 ~2003
15787061271262964901711 ~2004
1578748799315749759910 ~2003
1578768239315753647910 ~2003
1578846611315769322310 ~2003
15789060711263124856911 ~2004
1578909011315781802310 ~2003
Exponent Prime Factor Digits Year
1578973619315794723910 ~2003
1579021331315804266310 ~2003
1579024157947414494310 ~2004
1579027733947416639910 ~2004
15790375491263230039311 ~2004
1579051403315810280710 ~2003
15791378932210793050311 ~2005
1579252403315850480710 ~2003
1579270499315854099910 ~2003
1579380059315876011910 ~2003
1579400723315880144710 ~2003
1579568093947740855910 ~2004
15795757631579575763111 ~2005
1579627943315925588710 ~2003
1579652531315930506310 ~2003
1579686263315937252710 ~2003
15797281192843510614311 ~2005
1579777739315955547910 ~2003
1579787603315957520710 ~2003
15798243732527718996911 ~2005
1579930043315986008710 ~2003
1579981943315996388710 ~2003
1579982483315996496710 ~2003
1580022023316004404710 ~2003
1580048831316009766310 ~2003
Exponent Prime Factor Digits Year
15800573991264045919311 ~2004
15801308092212183132711 ~2005
15801806211264144496911 ~2004
1580272019316054403910 ~2003
1580281679316056335910 ~2003
1580315543316063108710 ~2003
158033430710430206426312 ~2007
1580379011316075802310 ~2003
15803913178534113111911 ~2006
1580409503316081900710 ~2003
1580419499316083899910 ~2003
1580421911316084382310 ~2003
1580426951316085390310 ~2003
1580566979316113395910 ~2003
1580627663316125532710 ~2003
1580680691316136138310 ~2003
1580710343316142068710 ~2003
1580712431316142486310 ~2003
1580724143316144828710 ~2003
1580744573948446743910 ~2004
1580788283316157656710 ~2003
1580796863316159372710 ~2003
1580811341948486804710 ~2004
1580844641948506784710 ~2004
1580850203316170040710 ~2003
Exponent Prime Factor Digits Year
1580981483316196296710 ~2003
1581033479316206695910 ~2003
15810586071264846885711 ~2004
1581063719316212743910 ~2003
15810860816008127107911 ~2006
15811331172529812987311 ~2005
15812015533794883727311 ~2005
1581213941948728364710 ~2004
1581267263316253452710 ~2003
1581423059316284611910 ~2003
15814474032530315844911 ~2005
1581452843316290568710 ~2003
15814628231581462823111 ~2005
1581504731316300946310 ~2003
1581505613948903367910 ~2004
1581612443316322488710 ~2003
1581650099316330019910 ~2003
1581704759316340951910 ~2003
1581712259316342451910 ~2003
1581729839316345967910 ~2003
15817714611265417168911 ~2004
15817738991581773899111 ~2005
15817765011265421200911 ~2004
1581860471316372094310 ~2003
1581888857949133314310 ~2004
Home
4.724.182 digits
e-mail
25-04-13