Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1500556763300111352710 ~2003
1500577619300115523910 ~2003
1500621599300124319910 ~2003
1500644891300128978310 ~2003
15006465911500646591111 ~2004
1500691403300138280710 ~2003
1500755351300151070310 ~2003
15008028894502408667111 ~2006
1500901943300180388710 ~2003
1500967631300193526310 ~2003
1501033777900620266310 ~2004
15011378872702048196711 ~2005
15012011711501201171111 ~2004
1501324943300264988710 ~2003
15013409211201072736911 ~2004
1501421897900853138310 ~2004
1501498451300299690310 ~2003
1501531331300306266310 ~2003
1501561403300312280710 ~2003
1501588859300317771910 ~2003
1501589951300317990310 ~2003
1501640051300328010310 ~2003
1501644491300328898310 ~2003
1501650011300330002310 ~2003
1501779011300355802310 ~2003
Exponent Prime Factor Digits Year
1501884239300376847910 ~2003
1501892351300378470310 ~2003
1501913771300382754310 ~2003
1501920083300384016710 ~2003
15019995473905198822311 ~2005
15020738691201659095311 ~2004
1502100373901260223910 ~2004
1502101343300420268710 ~2003
1502121119300424223910 ~2003
1502122859300424571910 ~2003
1502131361901278816710 ~2004
1502174759300434951910 ~2003
15021822591201745807311 ~2004
1502233319300446663910 ~2003
1502258561901355136710 ~2004
1502344223300468844710 ~2003
1502379899300475979910 ~2003
1502383451300476690310 ~2003
1502453377901472026310 ~2004
1502479523300495904710 ~2003
1502528099300505619910 ~2003
1502630159300526031910 ~2003
1502630351300526070310 ~2003
15026785791202142863311 ~2004
1502699591300539918310 ~2003
Exponent Prime Factor Digits Year
1502733119300546623910 ~2003
1502758781901655268710 ~2004
1502787983300557596710 ~2003
15028175932103944630311 ~2005
15028465391502846539111 ~2004
15028597371202287789711 ~2004
15029369994809398396911 ~2006
1503006299300601259910 ~2003
1503119699300623939910 ~2003
1503160811300632162310 ~2003
1503164051300632810310 ~2003
1503166823300633364710 ~2003
1503168851300633770310 ~2003
1503190079300638015910 ~2003
1503205103300641020710 ~2003
1503222239300644447910 ~2003
15032255833607741399311 ~2005
1503229381901937628710 ~2004
1503269533901961719910 ~2004
1503371951300674390310 ~2003
1503386051300677210310 ~2003
1503405023300681004710 ~2003
15034187333608204959311 ~2005
1503480239300696047910 ~2003
15034852332405576372911 ~2005
Exponent Prime Factor Digits Year
1503495803300699160710 ~2003
15035118591202809487311 ~2004
15036520492105112868711 ~2005
1503653363300730672710 ~2003
1503660299300732059910 ~2003
1503684053902210431910 ~2004
15037394991202991599311 ~2004
15037835991203026879311 ~2004
1503823103300764620710 ~2003
1503877079300775415910 ~2003
15039075431503907543111 ~2004
1503908963300781792710 ~2003
1503987011300797402310 ~2003
15039884277219144449711 ~2006
1503991871300798374310 ~2003
1504029119300805823910 ~2003
1504065551300813110310 ~2003
1504151393902490835910 ~2004
1504173119300834623910 ~2003
1504177523300835504710 ~2003
1504189943300837988710 ~2003
1504253417902552050310 ~2004
15042549771203403981711 ~2004
1504315223300863044710 ~2003
15043287672406926027311 ~2005
Home
4.724.182 digits
e-mail
25-04-13