Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
15043369272707806468711 ~2005
1504343063300868612710 ~2003
1504349279300869855910 ~2003
15046738794814956412911 ~2006
1504760459300952091910 ~2003
15047704671203816373711 ~2004
1504801973902881183910 ~2004
1504808243300961648710 ~2003
1504832941902899764710 ~2004
1504833923300966784710 ~2003
1504838591300967718310 ~2003
1504944733902966839910 ~2004
1504963871300992774310 ~2003
1505002199301000439910 ~2003
1505044631301008926310 ~2003
15050809011204064720911 ~2004
1505084291301016858310 ~2003
1505084351301016870310 ~2003
1505199791301039958310 ~2003
1505201039301040207910 ~2003
1505391323301078264710 ~2003
1505415479301083095910 ~2003
1505480591301096118310 ~2003
1505481143301096228710 ~2003
1505483579301096715910 ~2003
Exponent Prime Factor Digits Year
1505495471301099094310 ~2003
1505501219301100243910 ~2003
1505518633903311179910 ~2004
1505521403301104280710 ~2003
1505566511301113302310 ~2003
1505577611301115522310 ~2003
15056534811204522784911 ~2004
1505737451301147490310 ~2003
1505783033903469819910 ~2004
1505793323301158664710 ~2003
15058377791505837779111 ~2004
15058950432409432068911 ~2005
1505903603301180720710 ~2003
150593695318071243436112 ~2007
1505953703301190740710 ~2003
1505973263301194652710 ~2003
15059909571204792765711 ~2004
1505995703301199140710 ~2003
15060308475120504879911 ~2006
1506038783301207756710 ~2003
150604698114458051017712 ~2007
15061051491204884119311 ~2004
1506127523301225504710 ~2003
1506278723301255744710 ~2003
1506295799301259159910 ~2003
Exponent Prime Factor Digits Year
1506317339301263467910 ~2003
1506323639301264727910 ~2003
1506326411301265282310 ~2003
1506338843301267768710 ~2003
150643506724102961072112 ~2007
1506647843301329568710 ~2003
1506680951301336190310 ~2003
1507003703301400740710 ~2003
1507038191301407638310 ~2003
1507216751301443350310 ~2003
15072176293315878783911 ~2005
1507217801904330680710 ~2004
1507266791301453358310 ~2003
1507301513904380907910 ~2004
1507327541904396524710 ~2004
1507420751301484150310 ~2003
1507453091301490618310 ~2003
1507477177904486306310 ~2004
15075842231507584223111 ~2004
15076125672412180107311 ~2005
1507647191301529438310 ~2003
1507668551301533710310 ~2003
1507706413904623847910 ~2004
1507723213904633927910 ~2004
1507782203301556440710 ~2003
Exponent Prime Factor Digits Year
1507805303301561060710 ~2003
1507894331301578866310 ~2003
1508016431301603286310 ~2003
1508064179301612835910 ~2003
1508084111301616822310 ~2003
15080867633619408231311 ~2005
1508180711301636142310 ~2003
1508187251301637450310 ~2003
15082756611206620528911 ~2004
1508341511301668302310 ~2003
1508392043301678408710 ~2003
1508625491301725098310 ~2003
1508627111301725422310 ~2003
1508627639301725527910 ~2003
1508628479301725695910 ~2003
1508712671301742534310 ~2003
1508730623301746124710 ~2003
1508850659301770131910 ~2003
1508876111301775222310 ~2003
15088781691207102535311 ~2004
1508942951301788590310 ~2003
15089692391508969239111 ~2004
1509003539301800707910 ~2003
1509020459301804091910 ~2003
1509086123301817224710 ~2003
Home
4.724.182 digits
e-mail
25-04-13