Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1274365201764619120710 ~2003
1274423231254884646310 ~2002
1274431439254886287910 ~2002
1274485657764691394310 ~2003
1274490083254898016710 ~2002
1274492519254898503910 ~2002
1274494357764696614310 ~2003
1274509343254901868710 ~2002
1274523443254904688710 ~2002
1274527921764716752710 ~2003
1274531399254906279910 ~2002
1274569559254913911910 ~2002
1274584331254916866310 ~2002
1274596259254919251910 ~2002
1274614403254922880710 ~2002
12746362911019709032911 ~2004
1274709851254941970310 ~2002
12747305511019784440911 ~2004
1274747219254949443910 ~2002
12747570619178250839311 ~2006
1274762579254952515910 ~2002
12748011592294642086311 ~2004
1274896319254979263910 ~2002
1274908751254981750310 ~2002
1274942423254988484710 ~2002
Exponent Prime Factor Digits Year
1274946899254989379910 ~2002
12749892291019991383311 ~2004
1274991071254998214310 ~2002
1274993243254998648710 ~2002
1275000203255000040710 ~2002
1275001379255000275910 ~2002
12750178031275017803111 ~2004
1275096059255019211910 ~2002
1275097403255019480710 ~2002
12751117032040178724911 ~2004
1275137159255027431910 ~2002
1275148883255029776710 ~2002
1275208381765125028710 ~2003
1275211331255042266310 ~2002
12752152092805473459911 ~2005
1275302279255060455910 ~2002
1275340463255068092710 ~2002
1275366731255073346310 ~2002
12753717111020297368911 ~2004
1275458291255091658310 ~2002
1275473351255094670310 ~2002
12754860012040777601711 ~2004
1275523451255104690310 ~2002
1275552419255110483910 ~2002
1275571597765342958310 ~2003
Exponent Prime Factor Digits Year
1275616103255123220710 ~2002
1275621551255124310310 ~2002
12756264591020501167311 ~2004
1275646583255129316710 ~2002
1275682871255136574310 ~2002
1275715817765429490310 ~2003
1275760751255152150310 ~2002
1275826439255165287910 ~2002
1275833257765499954310 ~2003
1275840281765504168710 ~2003
1275872459255174491910 ~2002
12758729471275872947111 ~2004
1275882791255176558310 ~2002
12760875171020870013711 ~2004
1276093631255218726310 ~2002
12761826291020946103311 ~2004
1276185719255237143910 ~2002
1276191551255238310310 ~2002
12762583011021006640911 ~2004
1276282823255256564710 ~2002
1276287671255257534310 ~2002
12763687271276368727111 ~2004
12763751091021100087311 ~2004
1276387811255277562310 ~2002
12764049771021123981711 ~2004
Exponent Prime Factor Digits Year
1276433663255286732710 ~2002
12764622191276462219111 ~2004
1276464803255292960710 ~2002
12765063912297711503911 ~2004
1276579319255315863910 ~2002
12766112571021289005711 ~2004
1276649963255329992710 ~2002
12766609632042657540911 ~2004
1276680131255336026310 ~2002
12766805391021344431311 ~2004
1276690979255338195910 ~2002
1276709459255341891910 ~2002
1276734551255346910310 ~2002
12767848672298212760711 ~2004
1276792043255358408710 ~2002
1276794731255358946310 ~2002
1276849193766109515910 ~2003
1276874663255374932710 ~2002
1276888979255377795910 ~2002
1276924703255384940710 ~2002
12769740117151054461711 ~2006
1276984931255396986310 ~2002
1276992011255398402310 ~2002
1277009603255401920710 ~2002
12770303691787842516711 ~2004
Home
4.843.404 digits
e-mail
25-06-08