Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1271246891254249378310 ~2002
1271262491254252498310 ~2002
1271268503254253700710 ~2002
1271282921762769752710 ~2003
12713085612034093697711 ~2004
1271328161762796896710 ~2003
1271406203254281240710 ~2002
1271409383254281876710 ~2002
1271410979254282195910 ~2002
1271442239254288447910 ~2002
1271460623254292124710 ~2002
1271475371254295074310 ~2002
1271479403254295880710 ~2002
12714867911271486791111 ~2004
12715415331780158146311 ~2004
12715730273051775264911 ~2005
1271575691254315138310 ~2002
12715776473051786352911 ~2005
1271586623254317324710 ~2002
1271612759254322551910 ~2002
1271636039254327207910 ~2002
1271645591254329118310 ~2002
12716805191271680519111 ~2004
12716915991017353279311 ~2004
12717010373052082488911 ~2005
Exponent Prime Factor Digits Year
1271721239254344247910 ~2002
12717417771780438487911 ~2004
1271760641763056384710 ~2003
12718742211017499376911 ~2004
1271888281763132968710 ~2003
1271941613763164967910 ~2003
1272013679254402735910 ~2002
12720545691017643655311 ~2004
1272065437763239262310 ~2003
1272066443254413288710 ~2002
12720772491017661799311 ~2004
12721175415851740688711 ~2005
12721212291017696983311 ~2004
1272163441763298064710 ~2003
1272203759254440751910 ~2002
1272289211254457842310 ~2002
1272301259254460251910 ~2002
1272363479254472695910 ~2002
1272372119254474423910 ~2002
1272402899254480579910 ~2002
1272594311254518862310 ~2002
1272600577763560346310 ~2003
1272623531254524706310 ~2002
1272639671254527934310 ~2002
1272650663254530132710 ~2002
Exponent Prime Factor Digits Year
1272659291254531858310 ~2002
1272674303254534860710 ~2002
1272680939254536187910 ~2002
1272734891254546978310 ~2002
1272737423254547484710 ~2002
1272755411254551082310 ~2002
1272823619254564723910 ~2002
12728364173054807400911 ~2005
1272873863254574772710 ~2002
1272945757763767454310 ~2003
12730826511018466120911 ~2004
12731195271018495621711 ~2004
1273134623254626924710 ~2002
1273150937763890562310 ~2003
1273192559254638511910 ~2002
1273223519254644703910 ~2002
1273246223254649244710 ~2002
1273255583254651116710 ~2002
1273357139254671427910 ~2002
1273358111254671622310 ~2002
1273361651254672330310 ~2002
12734101191018728095311 ~2004
12734380933056251423311 ~2005
1273444031254688806310 ~2002
1273492799254698559910 ~2002
Exponent Prime Factor Digits Year
1273541603254708320710 ~2002
1273685291254737058310 ~2002
12737178672037948587311 ~2004
1273728359254745671910 ~2002
1273732319254746463910 ~2002
1273778477764267086310 ~2003
1273810823254762164710 ~2002
1273885031254777006310 ~2002
1273907051254781410310 ~2002
1273924451254784890310 ~2002
12739288011019143040911 ~2004
1273967483254793496710 ~2002
1274046857764428114310 ~2003
12740541531783675814311 ~2004
1274102891254820578310 ~2002
1274130001764478000710 ~2003
1274151083254830216710 ~2002
12741592611019327408911 ~2004
1274185943254837188710 ~2002
1274192819254838563910 ~2002
12742137711019371016911 ~2004
1274216231254843246310 ~2002
1274283683254856736710 ~2002
12743006172038880987311 ~2004
1274358719254871743910 ~2002
Home
4.843.404 digits
e-mail
25-06-08