Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
12958274871036661989711 ~2004
1295830043259166008710 ~2002
1295858461777515076710 ~2003
1295876723259175344710 ~2002
1295897363259179472710 ~2002
12959143031295914303111 ~2004
1295930591259186118310 ~2002
1295948183259189636710 ~2002
1295984141777590484710 ~2003
12960099294147231772911 ~2005
1296040979259208195910 ~2002
1296046421777627852710 ~2003
1296069191259213838310 ~2002
1296094379259218875910 ~2002
1296100271259220054310 ~2002
1296131693777679015910 ~2003
1296187897777712738310 ~2003
1296241283259248256710 ~2002
1296298079259259615910 ~2002
1296388979259277795910 ~2002
1296427961777856776710 ~2003
1296435839259287167910 ~2002
1296490271259298054310 ~2002
12965044911037203592911 ~2004
1296511823259302364710 ~2002
Exponent Prime Factor Digits Year
1296544451259308890310 ~2002
1296575963259315192710 ~2002
1296584363259316872710 ~2002
1296604091259320818310 ~2002
1296697043259339408710 ~2002
1296708299259341659910 ~2002
12967461894149587804911 ~2005
1296793343259358668710 ~2002
1296793931259358786310 ~2002
1296802163259360432710 ~2002
12968426991037474159311 ~2004
1296883223259376644710 ~2002
12969083691037526695311 ~2004
1296915551259383110310 ~2002
1296916393778149835910 ~2003
1296925583259385116710 ~2002
12969604371037568349711 ~2004
12970071671297007167111 ~2004
1297010063259402012710 ~2002
1297039511259407902310 ~2002
1297085651259417130310 ~2002
1297183403259436680710 ~2002
1297199219259439843910 ~2002
1297218683259443736710 ~2002
1297231739259446347910 ~2002
Exponent Prime Factor Digits Year
12972920115448626446311 ~2005
1297364357778418614310 ~2003
1297382699259476539910 ~2002
1297383383259476676710 ~2002
1297418519259483703910 ~2002
1297492499259498499910 ~2002
1297531139259506227910 ~2002
12976149712335706947911 ~2005
1297622471259524494310 ~2002
12976672491816734148711 ~2004
1297691099259538219910 ~2002
1297717979259543595910 ~2002
1297738679259547735910 ~2002
12977863791038229103311 ~2004
1297804619259560923910 ~2002
1297826281778695768710 ~2003
1297835219259567043910 ~2002
1297840403259568080710 ~2002
12978533091038282647311 ~2004
1297922603259584520710 ~2002
1297985459259597091910 ~2002
1298060473778836283910 ~2003
1298063471259612694310 ~2002
1298069351259613870310 ~2002
1298095391259619078310 ~2002
Exponent Prime Factor Digits Year
12981024191298102419111 ~2004
12981116091038489287311 ~2004
1298111723259622344710 ~2002
1298112001778867200710 ~2003
12981138533894341559111 ~2005
1298116811259623362310 ~2002
1298163457778898074310 ~2003
1298175563259635112710 ~2002
1298186243259637248710 ~2002
12981947691817472676711 ~2004
1298216063259643212710 ~2002
1298227013778936207910 ~2003
1298242943259648588710 ~2002
12984151335972709611911 ~2006
12984295011038743600911 ~2004
1298521019259704203910 ~2002
1298604479259720895910 ~2002
1298659403259731880710 ~2002
1298668643259733728710 ~2002
12987429473116983072911 ~2005
12987865391298786539111 ~2004
1298787863259757572710 ~2002
12988745832078199332911 ~2004
1298898959259779791910 ~2002
1298927417779356450310 ~2003
Home
4.843.404 digits
e-mail
25-06-08